Department of Mechanical Engineering

B.Tech. Manufacturing Engineering

Curriculum & Syllabus

2014 Regulations
ACADEMIC REGULATIONS (B.Tech)
(Full / Part Time) (Effective 2014-15)

1. Vision, Mission and Objectives

1.1 The Vision of the Institute is “To make every man a success and no man a failure”.

In order to progress towards the vision, the Institute has identified itself with a mission to provide every individual with a conducive environment suitable to achieve his / her career goals, with a strong emphasis on personality development, and to offer quality education in all spheres of engineering, technology, applied sciences and management, without compromising on the quality and code of ethics.

1.2 Further, the Institute always strives

- To train our students with the latest and the best in the rapidly changing fields of Engineering, Technology, Management, Science & Humanities.

- To develop the students with a global outlook possessing, state of the art skills, capable of taking up challenging responsibilities in the respective fields.

- To mould our students as citizens with moral, ethical and social values so as to fulfill their obligations to the nation and the society.

- To promote research in the field of Science, Humanities, Engineering, Technology and allied branches.

1.3 Aims and Objectives of the Institute are focused on

- Providing world class education in engineering, technology, applied sciences and management.

- Keeping pace with the ever changing technological scenario to help the students to gain proper direction to emerge as competent professionals fully aware of their commitment to the society and nation.

- To inculcate a flair for research, development and entrepreneurship.

2. Admission

2.1. The admission policy and procedure shall be decided from time to time by the Board of Management (BOM) of the Institute, following guidelines issued by Ministry of Human Resource Development (MHRD), Government of India. The number of seats in each branch of the B.Tech programme will be decided by BOM as per the directives from MHRD, Government of India and taking into account the market demands. Some seats for Non Resident Indians and a few seats for foreign nationals shall be made available.

2.2. (i) Full-Time:

At the time of applying for admission, the candidates should have passed / appeared and be awaiting results of the final examination of the 10+2 system or its equivalent with Mathematics, Physics and Chemistry as subjects of study.

(ii) Part-Time:

At the time of applying for admission, the candidates should have a Diploma in Engineering/Technology in the relevant branch of specialization awarded by the State Board of Technical Education, Tamil Nadu or any other authority accepted by the Board of Management of the University
as equivalent thereto and a minimum of one year practical experience.

iv) Professional practice including project, seminar and industrial training.

v) General elective courses, such as, Environmental Studies, Physical Education, Professional ethics, and National Service Scheme.

The distribution of total credits required for the degree programme into the above five categories will nominally be 20%, 50%, 15%, 5%, and 10% respectively.

3. Structure of the programme

3.1. The programme of instruction will have the following structure:

i) A general (common) core programme comprising basic sciences, engineering sciences, humanities, technical arts and mathematics.

ii) An engineering core programme introducing the student to the foundations of engineering in the respective branch.

iii) An elective programme enabling the student to opt and undergo a set of courses of interest to him/ her.

3.2.(i) Full-Time:

The duration of the programme will be a minimum of 8 semesters. Every branch of the B.E. / B.Tech. programme will have a curriculum and syllabi for the courses approved by the Academic Council.

ii) Part – Time:

The duration of the programme will be a minimum of 7 semesters. Every branch of the B.Tech. programme will have a curriculum and syllabi for the courses approved by the Academic Council.

3.3 The academic programmes of the Institute follow the credit system. The general pattern is:

- One credit for each lecture hour per week per semester;
- One credit for each tutorial hour per week per semester;
- Two credit for each laboratory practical/ drawing of three hours per week per semester.
- One credit for 4 weeks of industrial training and
- One credit for 4 hours of project per week per semester

3.4. (i) Full-Time:

For the award of degree, a student has to earn certain minimum total number of credits specified in the curriculum of the relevant branch of study. The curriculum of the different programs shall be so designed that the minimum prescribed credits required for the award of the degree shall be within the limits of 190-200.

(ii) Part-Time:

For the award of degree, a student has to earn certain minimum total number of credits specified in the curriculum of the relevant branch of study. The curriculum of the different programs shall be so designed that the minimum prescribed credits required for the award of the degree shall be within the limits of 110-120.

3.5. The medium of instruction, examination and the language of the project reports will be English.

4. Faculty Advisor

4.1. To help the students in planning their courses of study and for getting general advice on the academic programme, the concerned Department will assign a certain number of students to a Faculty member who will be called their Faculty Advisor.

5. Class Committee

5.1 A Class Committee consisting of the following will be constituted by the Head of the Department for each class:

(i) A Chairman, who is not teaching the class.

(ii) All subject teachers of the class.

(iii) Two students nominated by the department in consultation with the class.

The Class Committee will meet as often as necessary, but not less than three times during a semester.

The functions of the Class Committee will include:

(i) Addressing problems experienced by students in the classroom and the laboratories.

(ii) Analyzing the performance of the students of the class after each test and finding ways and means of addressing problems, if any.

(iv) During the meetings, the student members shall express the opinions and suggestions of the class students to improve the teaching / learning process.

6. Grading

6.1 A grading system as below will be adhered to.
6.2 GPA and CGPA

GPA is the ratio of the sum of the product of the number of credits C_i of course “i” and the grade points P_i earned for that course taken over all courses “i” registered by the student to the sum of C_i for all “i”. That is,

$$GPA = \frac{\sum_i C_i P_i}{\sum_i C_i}$$

CGPA will be calculated in a similar manner, at any semester, considering all the courses enrolled from the first semester onwards.

6.3. For the students with letter grade I in certain subjects, the same will not be included in the computation of GPA and CGPA until after those grades are converted to the regular grades.

6.4 Raw marks will be moderated by a moderation board appointed by the Vice Chancellor of the University. The final marks will be graded using an absolute grading system. The Constitution and composition of the moderation board will be dealt with separately.

7. Registration and Enrolment

7.1 Except for the first semester, registration and enrollment will be done in the beginning of the semester as per the schedule announced by the University.

7.2 A student will be eligible for enrollment only if he/she satisfies regulation 10 (maximum duration of the programme) and will be permitted to enroll if (i) he/she has cleared all dues in the Institute, Hostel and Library up to the end of the previous semester and (ii) he/she is not debarred from enrollment by a disciplinary action of the University.

7.3 Students are required to submit registration form duly filled in.

8. Registration requirement

8.1.(i). Full -Time:

A full time student shall not register for less than 16 credits or more than 30 credits in any given semester.

(ii). Part -Time:

A part time student shall not register for less than 10 credits or more than 20 credits in any given semester.
8.2 If a student finds his/her load heavy in any semester, or for any other valid reason, he/she may withdraw from the courses within three weeks of the commencement of the semester with the written approval of his/her Faculty Advisor and HOD. However the student should ensure that the total number of credits registered for in any semester should enable him/her to earn the minimum number of credits per semester for the completed semesters.

9. Continuation of the programme

9.1 For those students who have not earned the minimum required credit prescribed for that particular semester examination, a warning letter to the concerned student and also to his/her parents regarding the shortage of his/her credit will be sent by the HOD after the announcement of the results of the university examinations.

10. Maximum duration of the programme

10.1.(i) Full - Time

The normal duration of the programme is eight semesters. However a student may complete the programme at a slower pace by taking more time, but in any case not more than 14 semesters excluding the semesters withdrawn on medical grounds or other valid reasons.

(ii) Part - Time

The normal duration of the programme is seven semesters. However a student may complete the programme at a slower pace by taking more time, but in any case not more than 12 semesters excluding the semesters withdrawn on medical grounds or other valid reasons.

11. Temporary discontinuation

11.1. A student may be permitted by the Director (Academic) to discontinue temporarily from the programme for a semester or a longer period for reasons of ill health or other valid reasons. Normally a student will be permitted to discontinue from the programme only for a maximum duration of two semesters.

12. Discipline

12.1. Every student is required to observe discipline and decorum both inside and outside the campus and not to indulge in any activity which will tend to bring down the prestige of the University.

12.2. Any act of indiscipline of a student reported to the Director (Academic) will be referred to a Discipline Committee so constituted. The Committee will enquire into the charges and decide on a suitable punishment if the charges are substantiated. The committee will also authorize the Director (Academic) to recommend to the Vice Chancellor the implementation of the decision. The student concerned may appeal to the Vice Chancellor whose decision will be final. The Director (Academic) will report the action taken at the next meeting of the Council.

12.3. Ragging and harassment of women are strictly prohibited in the University campus and hostels.

13. Attendance

13.1. A student whose attendance is less than 75% in a semester is not eligible to
appear for the end – semester examination for that semester. The details of all students who have less than 75% attendance in a course will be announced by the teacher in the class. These details will be sent to the concerned HODs and Director (Academic).

13.2 Those who have less than 75% attendance will be considered for condonation of shortage of attendance. However, a condonation of 10% in attendance will be given on medical reasons. Application for condonation recommended by the Faculty Advisor, concerned faculty member and the HOD is to be submitted to the Director (Academic) who, depending on the merits of the case, may permit the student to appear for the end semester examination. A student will be eligible for this concession at most in two semesters during the entire degree programme. Application for medical leave, supported by medical certificate with endorsement by a Registered Medical Officer, should reach the HOD within seven days after returning from leave or, on or before the last instructional day of the semester, whichever is earlier.

13.3 As an incentive to those students who are involved in extra curricular activities such as representing the University in Sports and Games, Cultural Festivals, and Technical Festivals, NCC/ NSS events, a relaxation of up to 10% attendance will be given subject to the condition that these students take prior approval from the officer – in-charge. All such applications should be recommended by the concerned HOD and forwarded to Director (Academic) within seven instructional days after the programme / activity.

14. Assessment Procedure

14.1 The Academic Council will decide from time to time the system of tests and examinations in each subject in each semester.

14.2 For each theory course, the assessment will be done on a continuous basis as follows:

<table>
<thead>
<tr>
<th>Test / Exam</th>
<th>Weightage</th>
<th>Duration of Test / Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Periodical Test</td>
<td>10%</td>
<td>2 Periods</td>
</tr>
<tr>
<td>Second Periodical Test</td>
<td>10%</td>
<td>2 Periods</td>
</tr>
<tr>
<td>Model Exam</td>
<td>20%</td>
<td>3 hours</td>
</tr>
<tr>
<td>Seminar/Assignments/Quiz</td>
<td>10%</td>
<td>-</td>
</tr>
<tr>
<td>Attendance</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>End – semester examination</td>
<td>50%</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

*Best out of the two test will be considered.

14.3 For practical courses, the assessment will be done by the subject teachers as below:

(i) Weekly assignment/Observation note book / lab records – weightage 60%.
(ii) End semester examination of 3 hours duration including viva – weightage 40%.

14.4 For courses on Physical Education, NSS, etc the assessment will be as satisfactory/not satisfactory only.

15. Make up Examination/Model Exam
15.1. Students who miss the end-semester examinations / model examination for valid reasons are eligible for make-up examination / model examination. Those who miss the end-semester examination / model examination should apply to the Head of the Department concerned within five days after he / she missed examination, giving reasons for absence.

15.2. Permission to appear for make-up examination / model examination will be given under exceptional circumstances such as admission to a hospital due to illness. Students should produce a medical certificate issued by a Registered Medical Practitioner certifying that he/she was admitted to hospital during the period of examination / model exam and the same should be duly endorsed by parent / guardian and also by a medical officer of the University within 5 days.

16. Project evaluation

16.1 For Project work, the assessment will be done on a continuous basis as follows:

<table>
<thead>
<tr>
<th>Review / Examination</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Review</td>
<td>10%</td>
</tr>
<tr>
<td>Second Review</td>
<td>20%</td>
</tr>
<tr>
<td>Third Review</td>
<td>20%</td>
</tr>
<tr>
<td>End-semester Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

For end – semester examination, the student will submit a Project Report in a format specified by the Director (Academic). The first three reviews will be conducted by a Committee constituted by the Head of the Department. The end – semester examination will be conducted by a Committee constituted by the Registrar / Controller of examination. This will include an external expert.

17. Declaration of results

17.1.(i) A candidate who secures not less than 50% of total marks prescribed for a course with a minimum of 50% of the marks prescribed for the end semester examination shall be declared to have passed the course and earned the specified credits for the course.

(ii) To be Eligible to appear for the end semester examinations for a particular course, a candidate will have to secure a minimum of 40% marks in the sessional for that course.

(iii) Candidates are required to obtain all credits assigned to the first two semesters of the programme within the first four semesters of the programme. Candidates failing to satisfy this requirement will not be allowed to proceed to the fifth semester until the condition is satisfied. Further, candidates will not be allowed to proceed to seventh semester if they have not cleared all the courses assigned during third & fourth semesters.

17.2 After the valuation of the answer scripts, the tabulated results are to be scrutinized by the Result Passing Boards of UG programmes constituted by the Vice-Chancellor. The recommendations of the Result Passing Boards will be placed before the Standing Sub Committee of the Academic Council constituted by the Chancellor for scrutiny. The minutes of the Standing Sub Committee along with the results are to be placed before the Vice-Chancellor for approval. After getting the approval of the Vice-Chancellor, the results will be published by the Controller of Examination/Registrar.
17.3 If a candidate fails to secure a pass in a course due to not satisfying the minimum requirement in the end semester examination, he/she shall register and re-appear for the end semester examination during the following semester. However, the sessional marks secured by the candidate will be retained for all such attempts.

17.4 If a candidate fails to secure a pass in a course due to insufficient sessional marks though meeting the minimum requirements of the end semester examination, and wishes to improve on his/her sessional marks, he/she will have to register for the particular course and attend the course with permission of the HOD concerned and Director(Academic) with a copy marked to the Registrar. The sessional and external marks obtained by the candidate in this case will replace the earlier result.

17.5 A candidate can apply for the revaluation of his/her end semester examination answer paper in a theory course within 2 weeks from the declaration of the results, on payment of a prescribed fee through proper application to the Registrar/Controller of Examinations through the Head of the Department. The Registrar/Controller of Examination will arrange for the revaluation and the results will be intimated to the candidate concerned through the Head of the Department. Revaluation is not permitted for practical courses and for project work.

17.6 After ten semesters, the sessional marks of the candidate will not be considered for a pass in a course. A candidate who secures 50% in the end semester examination shall be declared to have passed the course and earned the specified credits for the course.

18. Grade Card

18.1 After results are declared, grade sheet will be issued to each student which will contain the following details:

(i) Program and branch for which the student has enrolled.
(ii) Semester of registration.
(iii) List of courses registered during the semester and the grade scored.
(iv) Semester Grade Point Average (GPA)
(v) Cumulative Grade Point Average (CGPA).

19. Class/Division

19.1 Classification is based on CGPA and is as follows:

CGPA ≥ 8.0 : First Class with distinction
6.5 ≤ CGPA < 8.0 : First Class
5.0 ≤ CGPA < 6.5 : Second Class.

19.2 (i) Further, the award of ‘First class with distinction’ is subject to the candidate becoming eligible for the award of the degree having passed the examination in all the courses in his/her first appearance within the minimum duration of the programme.

(ii) The award of ‘First Class’ is further subject to the candidate becoming eligible for the award of the degree having passed
the examination in all the courses within 10 semesters.

(iii) The period of authorized discontinuation of the programme (vide clause 11.1) will not be counted for the purpose of the above classification.

20. Transfer of credits

20.1 Within the broad framework of these regulations, the Academic Council, based on the recommendation of the transfer of credits committee so consulted by the Chancellor may permit students to earn part of the credit requirement in other approved institutions of repute and status in the country or abroad.

20.2 The Academic Council may also approve admission of lateral entry (who hold a diploma in Engineering/technology) candidates with advance credit based on the recommendation of the transfer of credits committee on a case to case basis.

21. Eligibility for the award of B.Tech. Degree

21.1 A student will be declared to be eligible for the award of the B.Tech. Degree if he/she has

i) registered and successfully acquired the credits for the core courses;

ii) successfully acquired the credits in the different categories as specified in the curriculum corresponding to the discipline (branch) of his/her study within the stipulated time;

iii) has no dues to all sections of the Institute including Hostels, and

iv) has no disciplinary action pending against him/her.

The award of the degree must be recommended by the Academic Council and approved by the Board of Management of the University.

22. Change of Branch

22.1 If the number of students in any branch of B.Tech. class as on the last instructional day of the First Semester is less than the sanctioned strength, then the vacancies in the said branches can be filled by transferring students from other branches. All such transfers will be allowed on the basis of merit of the students. The decision of the Chancellor shall be final while considering such requests.

22.2 All students who have successfully completed the first semester of the course will be eligible for consideration for change of branch subject to the availability of vacancies.

23. Power to modify

23.1 Notwithstanding all that has been stated above, the Academic Council shall modify any of the above regulations from time to time subject to approval by the Board of Management.
Manufacturing Engineering – B. Tech. Programme

(Outcome based syllabus)

Programme Goal:

Manufacturing Engineering is concerned with “the innovative application of Engineering and Management sciences that emphasis on existing and emerging technologies to the complete life cycle of all mechanical devices, machines and systems.” The programme will provide high quality education and training in the field of Manufacturing Engineering to develop the skill in the application of knowledge: based on mathematics, science, design, materials and manufacturing, integrated with business and management to develop sustainable and environmentally compatible technological solutions that provide the infrastructure, goods and services needed by society. Alternatively the programme enables the graduate to join higher studies in the field of specialization.

Programme Aims:

The aims of the programme are to:

- Provide with a sound understanding of the fundamental principles, methods, analysis and synthesis in engineering design and applications appropriate to the discipline of Manufacturing Engineering
- Provide with a range of specialist modules integrated within the structured learning environment, reflecting the internationally renowned research expertise within Engineering Sciences, in order to broaden and deepen educational experience
- Train to become a professional engineer and to have a broad range of knowledge and skills (including IT and communication skills) capable of meeting the present and future demands of the manufacturing engineering profession
- Offer a degree structure that is relevant to industry, and responsive to changes in technology and the needs of the community
- Provide a supportive and intellectually stimulating environment that encourages an aptitude of independent learning and Inquiry, and fosters an ethos of lifetime learning and professional development
- Offer a range of individual and group projects and assignments that are supported by the research activities within Engineering Sciences and stimulate individual innovation, self-assessment and teamwork skills required in manufacturing engineering.

Programme Outcome:

The Program should enable the student to:

1. Master the depth of knowledge required for a degree, including the ability to
 - Articulate disciplinary and interdisciplinary theories, concepts, principles, skills and practices.
 - Synthesize knowledge across courses and other experiences.
 - Apply knowledge from core curriculum courses, discipline-based courses, and others.
 - Experiences in a range of contexts to solve problems and make decisions.
2. Demonstrate critical thinking, including the ability to
 - Evaluate, analyze, and integrate information from a variety of sources.
 - Use appropriate strategies and tools to represent, analyze, and integrate information.
3. Communicate effectively, including the ability to
 - Demonstrate effective oral communication skills.
 - Present work effectively to a range of audiences.
 - Effectively communicate original and creative ideas.
4. Practice personal and social responsibility, including the ability to
• Practice ethical leadership.
• Recognize an ethical dilemma and apply rational decision-making in order to address it.
• Choose ethical courses of action in research and practice.
• Acknowledge and address the consequences of one’s own actions.
• Engage in local and global civic activities.

5. Demonstrate social, cultural, and global competence, including the ability to
• Live and work effectively in a diverse and global society.
• Articulate the value of a diverse and global perspective.
• Recognize diverse economic, political, cultural and religious opinions and practices.

6. Prepare to engage in lifelong learning, including the ability to
• Exhibit the skills necessary to acquire, organize, reorganize and interpret new knowledge.
• Show proficiency in current technologies and the ability to adapt to emerging technologies.
• Recognize and participate in activities that enhance wellness of body, mind, and spirit.
• Formulate a plan of personal goals for continued professional growth.
• Demonstrate intellectual curiosity.

7. Work collaboratively, including the ability to
• Participate effectively in teams.
• Consider different points of view.
• Work with others to support a shared purpose or goal.
HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE
DEPARTMENT OF MECHANICAL ENGINEERING

Semester I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EL2101</td>
<td>Technical English</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MA2101</td>
<td>Engineering Mathematics– I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PH2001/CY2001</td>
<td>Engineering Physics–I/Engineering Chemistry-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME2101</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CS2101</td>
<td>Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CS2131</td>
<td>Computer Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>GE2131</td>
<td>Engineering Practices Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>EL2131</td>
<td>Communication Skill development -I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>PH2031/CY2031</td>
<td>Physics Laboratory/ Chemistry Lab*</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>21</td>
<td>21</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: * Depending on the number of batches, it will be alternated between semesters 1 & 2.

Semester II

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA2201</td>
<td>Engineering Mathematics – II#</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CY2001/PH2001</td>
<td>Engineering Chemistry-I/Engineering Physics –I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ME2201</td>
<td>Engineering Mechanics**</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MF2201</td>
<td>Machine Tools and Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EE2212</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CY2031</td>
<td>Chemistry Laboratory / Physics Laboratory*#</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>GE2231</td>
<td>Engineering Practices Laboratory – II#</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>EE2235</td>
<td>Electrical Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>EL2231</td>
<td>Communication Skill Development Lab-I#</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>22</td>
<td>22</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl. No</td>
<td>Course Code</td>
<td>Course Title</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
<td>TCH</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MA2301</td>
<td>Engineering Mathematics – III*</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ME 2301</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ME 2302</td>
<td>Fluid Mechanics & Fluid Machinery</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MF 2301</td>
<td>Material Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME 2304</td>
<td>Metrology & Measurements</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MH 2331</td>
<td>Fluid Mechanics & Machinery Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ME 2332</td>
<td>Manufacturing Technology Lab - I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ME 2333</td>
<td>Metrology and Measurements Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ME 2334</td>
<td>Machine Elements and Assembly Drawing</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester-IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PE2401</td>
<td>Casting and Welding Technology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>EC 2411</td>
<td>Electronics and Microprocessor</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MF 2402</td>
<td>CNC Technology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME 2402</td>
<td>Strength of Materials</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ME 2403</td>
<td>Mechanics of Machines - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EC 2435</td>
<td>Electronics and Microprocessor Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ME2431</td>
<td>Manufacturing Technology Lab - I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ME 2432</td>
<td>Strength of Materials Lab**</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ME 2433</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semester-V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ME 2501</td>
<td>Design of Machine Elements</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MF 2501</td>
<td>Computer Aided Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ME 2758</td>
<td>Modern Concepts of Engineering Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME 2504</td>
<td>Engineering Materials and Metallurgy</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME 2761</td>
<td>Process Planning & Cost Estimation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ME 2531</td>
<td>Dynamics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>MF 2531</td>
<td>Metallurgy and Non Destructive Testing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ME 2533</td>
<td>CAD/CAM Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester - VI

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MG 2001</td>
<td>Principles of Management*</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CY 2002</td>
<td>Environmental Science and Engineering**</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MF 2601</td>
<td>Metal Forming and Powder Metallurgy</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ME 2765</td>
<td>Computer Integrated Manufacturing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ME 2603</td>
<td>Industrial Automation & Robotics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ME 2631</td>
<td>CAM Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>EL 2431</td>
<td>Communication Skills & Personality Development Lab - III</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>ME 2633</td>
<td>Design Project-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Common to Civil, Automobile, Mechanical Engineering

** Common to Automobile, Aeronautical, Electronics & Instrumentation, Mechanical Engineering.
Semester – VII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ME2202</td>
<td>Total Quality Management*</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ME 2701</td>
<td>Finite Element Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ME2702</td>
<td>Mechatronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME2764</td>
<td>Operation Research</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elective– III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective– IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ME 2731</td>
<td>Computer Aided Simulation and Analysis Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ME 2732</td>
<td>Mechatronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ME2733</td>
<td>Design Project-II & Comprehensive Viva Voce</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

*common to Automobile, Aeronautical, Civil, Electronics & Instrumentation, Mechanical Engineering.

Semester – VIII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Elective-III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Project & Viva Voce</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

16
ELECTIVE COURSE – VII SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MG 2004</td>
<td>Marketing Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ME 2751</td>
<td>Unconventional Machining Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ME 2871</td>
<td>Nano Coating</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME 2872</td>
<td>Precision Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME 2754</td>
<td>Mechanical Vibration</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ME 2755</td>
<td>Quality Control and Reliability Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ME 2756</td>
<td>Design of Jigs, Fixtures and Press Tools</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ME 2757</td>
<td>Computational Fluid Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ME 2873</td>
<td>Processing of Plastics and Composite Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ME 2874</td>
<td>Theory of Metal Cutting</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>ME 2760</td>
<td>Composite Materials and Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>ME 2761</td>
<td>Process Planning & Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>ME 2762</td>
<td>Dynamics and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>ME 2875</td>
<td>System Simulation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>ME 2876</td>
<td>Value Engineering and Re Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>ME 2877</td>
<td>Additive Manufacturing Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVE COURSE – VIII SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GE 2001</td>
<td>Professional Ethics and Human Values</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MG 2003</td>
<td>Entrepreneurship Development</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MG 2005</td>
<td>Engineering Economics and Cost Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ME 2851</td>
<td>Production Planning and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ME 2878</td>
<td>Flexible Manufacturing Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ME 2853</td>
<td>New Product Design and Development</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ME 2854</td>
<td>Maintenance Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ME 2855</td>
<td>Non-destructive Testing Methods</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ME 2879</td>
<td>MEMS and Micro System Fabrication</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ME 2880</td>
<td>Nano Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*CommontoCivil,Aeronautical,MechanicalEngineering
**CommontoEIE,MechanicalEngineering
***CommontoAutomobileandMechanicalEngineering
SEMESTERWISE

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Title</th>
<th>C</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Semester I</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Semester II</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Semester III</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Semester IV</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Semester V</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Semester VI</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Semester VII</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Semester VIII</td>
<td>09</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>TOTAL CREDITS</td>
<td>198</td>
<td>252</td>
</tr>
</tbody>
</table>
SEMESTER - I

EL 2101 TECHNICAL ENGLISH

GOAL
The goal of the programme is to provide a theoretical input towards nurturing accomplished learners who can function effectively in the English language skills; to cultivate in them the ability to indulge in rational thinking, independent decision-making and lifelong learning; to help them become responsible members or leaders of the society in and around their workplace or living space; to communicate successfully at the individual or group level on engineering activities with the engineering community in particular, and on multi-disciplinary activities in general, with the world at large.

OBJECTIVES
The course should enable the students to:

1. Widen the capacity of the learners to listen to English language at the basic level and understand its meaning.
2. Enable learners to communicate in an intelligible English accent and pronunciation.
3. Assist the learners in reading and grasping a passage in English.
4. Learn the art of writing simple English with correct spelling, grammar and punctuation.
5. Cultivate the ability of the learners to think and indulge in divergent and lateral thoughts.

OUTCOME
The students should be able to:

1. Have the self-confidence to improve upon their informative listening skills by an enhanced acquisition of the English language.
2. Speak English at the formal and informal levels and use it for daily conversation, presentation, group discussion and debate.
3. Read, comprehend and answer questions based on literary, scientific and technological texts.
5. Have the confidence to develop thinking skills and participate in brainstorming, mind-mapping, audiovisual activities, creative thinking and also answer tests in the job-selection processes.

UNIT I LISTENING SKILL

Listening to the sounds, silent letters & stress in English words & sentences - Listening to conversation & telephonic conversation -- Listening for general meaning & specific information -- Listening for positive & negative comments - Listening to technical topics - Listening to prose & poetry reading - Listening exercises.

Embedded language learning: Sentence definition -- Spelling & punctuation -- Imperative form Sequencing of sentences -- Gerunds -- Infinitives -- Wh-questions.
UNIT II SPEAKING SKILL

Self-introduction - Expressing personal opinion - Dialogue - Conversation - Simple oral interaction - Speaking on a topic -- Expressing views for & against -- Speaking on personal topics like hobbies, topics of interest, present & past experiences, future plans - Participating in group discussions, role plays, debates, presentations, power-point presentations & job-interviews.

UNIT III READING SKILL

Reading anecdotes, short stories, poems, parts of a novel, notices, message, time tables, advertisements, leaflets, itinerary, content page - Reading pie chart & bar chart -- Skimming and scanning -- Reading for contextual meaning - Scanning for specific information -- Reading newspaper & magazine articles - Critical reading -- Reading-comprehension exercises.

Embedded language learning: Tenses - Active and passive voice -- Impersonal passive -- Words and their function -- Different grammatical forms of the same word.

UNIT IV WRITING SKILL

Writing emails, notes, messages, memos, notices, agendas, advertisements, leaflets, instructions, recommendations & checklists -- Writing paragraphs -- Comparisons & contrasts Process description of Flow charts - Interpretation of Bar charts & Pie charts - Writing the minutes of a meeting -- Report writing -- Industrial accident reports -- Letter-writing -- Letter to the editors - Letter inviting & accepting or declining the invitation - Placing orders - Complaints -- Letter requesting permission for industrial visits or implant training, enclosing an introduction to the educational institution -- Letters of application for a job, enclosing a CV or Resume - Covering letter.

Embedded language learning: Correction of errors - Subject-verb Concord -- Articles - Prepositions - Direct and indirect speech.

UNIT V THINKING SKILL

Eliciting & imparting the knowledge of English using thinking blocks - Developing thinking skills along with critical interpretation side by side with the acquisition of English -- Decoding diagrams & pictorial representations into English words, expressions, idioms and proverbs.

Embedded language learning: General vocabulary -- Using expressions of cause and effect -Comparison & contrast -- If-conditionals -- Expressions of purpose and means.

REFERENCES

MA 2101 ENGINEERING MATHEMATICS I

L T P C
3 1 0 4

To create the awareness and comprehensive knowledge in engineering mathematics.

OBJECTIVES
The course should enable the students to:

1. Find the inverse of the matrix by using Cayley Hamilton Theorem and Diagonalisation of matrix using transformation.
2. Understand the Evolutes and Envelope of the curve.
3. Learn the solutions of second order linear differential equations of standard types and Legendre's linear differential equation.
4. Learn partial differentiations involving two and three variables and expansions of functions using Taylor series.
5. Learn the expansions of trigonometric, hyperbolic functions and their relations.

OUTCOME
The students should be able to:

1. Identify Eigen value problems from practical areas and obtain its solutions and using transformation diagonalising the matrix which would render Eigen values.
2. Find out effectively the geometrical aspects of curvature and appreciates mathematical skills in constructing evolutes and envelopes in mechanics and engineering drawing.
3. Recognize and to model mathematically and solving, the differential equations arising in science and engineering.
4. Understand and model the practical problems and solve it using maxima and minima as elegant applications of partial differentiation.
5. Acquire skills in using trigonometric and hyperbolic and inverse hyperbolic functions.

UNIT I MATRICES

Characteristic equation - Properties of Eigen values - Eigen values and Eigen vectors - Cayley Hamilton theorem (without proof) - Verification and inverse using Cayley Hamilton theorem. Diagonalisation of matrices - Orthogonal matrices - Quadratic form - Reduction of symmetric matrices to a Canonical form using orthogonal transformation - Nature of quadratic form
UNIT II DIFFERENTIAL CALCULUS

Review: Basic concepts of differentiation - function of function, product and quotient rules.
Methods of differentiation of functions - Cartesian form - Parametric form - Curvature - Radius of
curvature - Centre of curvature - Circle of curvature. Evolutes of parabola, circle, ellipse, hyperbola and
cycloid - Envelope.

UNIT III ORDINARY DIFFERENTIAL EQUATIONS

Review: Definition, formation and solutions of differential equations.
Second order differential equations with constant coefficients - Particular integrals - , eaxCosbx,
eaxSinbx. Euler's homogeneous linear differential equations - Legendre's linear differential equation
Variation of parameters.

UNIT IV PARTIAL DIFFERENTIATION

Partial differentiation - differentiation involving two and three variables - Total differentiation -Simple
problems. Jacobian - verification of properties of Jacobians - Simple problems. Taylor's series Maxima and
minima of functions of two and three variables.

UNIT V TRIGONOMETRY

Review: Basic results in trigonometry and complex numbers - De Moivre's theorem.
Expansions of sinn, cosn, tan n where n is a positive integer. Expansions of in terms of sines and
cosines of multiples of where m and n are positive integers. Hyperbolic and inverse hyperbolic functions
- Logarithms of complex numbers - Separation of complex functions into real and imaginary parts - Simple
problems.
Note: Questions need not be asked from review part.

TOTAL: 60 TEXT

BOOKS

REFERENCES

PH2001 ENGINEERING PHYSICS

L T P C
3 0 0 3

To impart fundamental knowledge in various fields of Physics and its applications.

OBJECTIVES
The course should enable the students to:

1. Develop strong fundamentals of properties and behaviour of the materials
2. Enhance theoretical and modern technological aspects in acoustics and ultrasonics.
3. Enable the students to correlate the theoretical principles with application oriented study of optics.
4. Provide a strong foundation in the understanding of solids and materials testing.
5. Enrich the knowledge of students in modern engineering materials.

OUTCOME
The students should be able to:

1. Understand the properties and behaviour of materials.
2. Have a fundamental knowledge of acoustics which would facilitate in acoustical design of buildings and on ultrasonics and be able to employ it as an engineering tool.
3. Understand the concept, working and application of lasers and fiber optics.
4. Know the fundamentals of crystal physics and non destructive testing methods.
5. Have an understanding of the production, characteristics and application of the new engineering materials. This would aid them in the material selection stage.

UNIT I PROPERTIES OF MATTER

UNIT II ACOUSTICS AND ULTRASONICS

Classification of sound - characteristics of musical sound - intensity - loudness - Weber Fechner law - Decibel - Reverberation - Reverberation time, derivation of Sabine's formula for reverberation time(Jaeger's method) - absorption coefficient and its determination - factors affecting acoustics of building (Optimum reverberation time, loudness, focusing, echo, echelon effect, resonance and noise) and their remedies. Ultrasonics - production - Magnetostriction and Piezoelectric methods - properties - applications of ultrasonics with particular reference to detection of flaws in metal (Non - Destructive testing NDT) - SONAR.
UNIT III LASER AND FIBRE OPTICS

UNIT IV CRYSTAL PHYSICS AND NON-DESTRUCTIVE TESTING
Crystal Physics: Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - ’d’ spacing in cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - coordination number Packing factor for SC, BCC, FCC and HCP structures.

Non Destructive Testing: Liquid penetrate method - Ultrasonic flaw detection - ultrasonic flaw detector (block diagram) - X-ray Radiography - Merits and Demerits of each method.

UNIT V MODERN ENGINEERING MATERIALS AND SUPERCONDUCTING MATERIALS

Superconducting Materials: Superconducting phenomena - Properties of superconductors - Meissner effect - Type I and Type II superconductors - High Tc superconductors (qualitative) - uses of superconductors.

TOTAL : 45

TEXT BOOKS

REFERENCES
 P.Charles, Poople and Frank J. Owens, Introduction to Nanotechnology, Wiley India,
To impart basic principles of chemistry for engineers.

OBJECTIVES
The course should enable the students to

1. Make the students conversant with the basics of
 (a) Water technology And (b) Polymer science
2. Provide knowledge on the requirements and properties of a few important engineering materials.
3. Educate the students on the fundamentals of corrosion and its control.
4. Give a sound knowledge on the basics of a few significant terminologies and concepts in thermodynamics.
5. Create an awareness among the present generation about the various conventional energy sources.

OUTCOME
The students should be able to

1. Gain basic knowledge in water analysis and suitable water treatment method.
2. Get an idea on the type of polymers to be used in engineering applications.
3. Get awareness about new materials
4. Get knowledge on the effects of corrosion and protection methods will help the young minds to choose proper metal / alloys and also to create a design that has good corrosion control.
5. Get exposure on the important aspects of basic thermodynamics will be able to understand the advanced level thermodynamics in engineering applications.
6. Get a good background on the various aspects of energy sources will create awareness on the need to utilize the fuel sources effectively and also for exploring new alternate energy resources.

UNIT I WATER TECHNOLOGY AND POLYMER CHEMISTRY

Hardness (Definition, Types, Units) - problems - Estimation of Hardness (EDTA Method) - Water softening - Carbonate conditioning and Calgon conditioning - Demineralization (Ion-Exchange Method) - Water Quality Parameters - Municipal Water Treatment- Desalination - Reverse Osmosis.

Classification of Polymers - PVC, Bakelite - preparation, properties and applications - Effect of Polymer Structure on Properties - Compounding of Plastics- Polymer Blends and Polymer Alloys Definition, Examples
UNIT II ENGINEERING MATERIALS 9
Properties of Alloys - Heat Treatment of Steel - Polymer Composites - types and applications. Lubricants - Classification, properties and applications - Mechanism of Lubrication - MoS2 And Graphite - Adhesives - classification and properties - Epoxy resin (Preparation, properties and applications) - Refractories - Classification, Properties and General Manufacture - Abrasives Classification, Properties and Uses - Carbon nano tubes - preparation, properties and applications.

UNIT III ELECTROCHEMISTRY AND CORROSION 9
Conductometric Titration - HCl vs NaOH and mixture of acids vs NaOH - Electrochemical Series and its applications - Nerst Equation - problems - Polarization, Decomposition Potential, Over-voltage (definitions only) - Galvanic series - Corrosion (Definition, Examples, effects) - Mechanism of Dry Corrosion and Wet Corrosion - Differential aeration Corrosion, examples - Factors Influencing Corrosion - Metal and Environment - Corrosion Control - Design - Cathodic Protection methods - Protective Coatings - Galvanising - Anodising - Electroplating (Cu and Ni) and Electroless plating (Cu and Ni) Constituents of Paints and varnish.

UNIT IV CHEMICAL THERMODYNAMICS 9

UNIT V FUELS AND ENERGY SOURCES 9

TOTAL : 45

TEXT BOOKS

REFERENCES
1. B. K. Sharma, Engineering chemistry, Krishna Prakasam Media (P) Ltd., 2003
3. A. Gowarikar, Text Book of Polymer Science, 2002
4. Kuriacose & Rajaram, Vols. 1 & 2, Chemistry in Engineering and Technology, 2004
GOAL
To develop graphical skills for communicating concepts, ideas and designs of engineering products and to give exposure to national standards relating to technical drawings.

OBJECTIVES
The course should enable the students to learn
1. The drawing standards and use of drawing instruments.
2. How to draw first angle projection.
3. The free hand sketching and introduce to computer aided drafting
4. The different types of projection.
5. The process of design from sketching to parametric, 3D CAD and 2D orthographic drawings to BIS

OUTCOME
After studying this subject, the students would be able
1. To Develop Parametric design and the conventions of formal engineering drawing
2. To Produce and interpret 2D & 3D drawings
3. To Communicate a design idea/concept graphically
4. To Examine a design critically and with understanding of CAD would be able to interpret drawings, and to produce designs using a combination of 2D and 3D software.
5. To Get a Detailed study of an engineering artifact

Note: Only first angle projection is to be followed

BASICS OF ENGINEERING GRAPHICS
Importance of graphics Use of drawing instruments - BIS conventions and specifications - drawing sheet sizes, layout and folding - lettering - Dimensioning-Geometrical constructions - Scales. Construction of curves like ellipse, parabola, cycloids and involutes.

UNIT I PROJECTION OF POINTS, LINES AND SURFACES
General principles of presentation of technical drawings as per BIS - Introduction to Orthographic projection - Naming views as per BIS - First angle projection. Projection of points. Projection of straight lines located in first quadrant using rotating line (using method only). Projection of plane surfaces like polygonal lamina and circular lamina. Drawing views when the surface of the lamina is inclined to one reference plane.

UNIT II PROJECTION OF SOLIDS
Projections of simple solids like prism, pyramid, cylinder and cone - Drawing views when the axis of the solid is inclined to one reference plane. Introduction to 'section of solids'.
UNIT III DEVELOPMENT OF SURFACES
Development of lateral surfaces of truncated prisms, pyramids, cylinders and cones.

UNIT IV ORTHOGRAPHIC PROJECTIONS
Orthographic projections - Conversion to orthographic views from given pictorial views of objects, including dimensioning. Free hand sketching of Orthographic views from Pictorial views.

UNIT V PICTORIAL PROJECTIONS
Isometric projection - Isometric scale - Isometric views of simple solids like prisms, pyramids, cylinders and cones. Introduction to perspective Projections.

COMPUTER AIDED DRAFTING (Demonstration Only)
Introduction to computer aided drafting and dimensioning using appropriate software.

2D drawing commands: Zoom, Picture editing commands, Dimensioning, Isometric drawing, IsoPlanes and 3D drafting. Plotting of drawing. Practice includes drawing the projection of lines and solids. Prepare isometric view of simple solids like prisms, pyramids, cylinders and cones.

TOTAL : 60

TEXT BOOKS

REFERENCES
GOAL
To introduce computers and programming and to produce an awareness of the power of computational
techniques that are currently used by engineers and scientists and to develop programming skills to a level
such that problems of reasonable complexity can be tackled successfully.

OBJECTIVES
The course should enable the students to:

1. Learn the major components of a Computer system.
2. Learn the problem solving techniques.
3. Develop skills in programming using C language.

OUTCOMES
The student should be able to:

1. Understand the interaction between different components of Computer system and number system.
2. Devise computational strategies for developing applications.
3. Develop applications (Simple to Complex) using C programming language.

UNIT I COMPUTER FUNDAMENTALS
Application of Computers - Components of a Computer System - Hardware - Software - Starting a
Computer (Booting) - Number Systems.

UNIT II COMPUTER PROGRAMMING AND LANGUAGES
Introduction - Problem-Solving Techniques: Algorithms, Flowchart, Pseudocode - Program Control
Structures - Programming Paradigms - Programming languages - Generations of Programming Languages
- Language Translators - Features of a Good Programming Languages.

UNIT III PROGRAMMING WITH C
Introduction to C - The C Declaration - Operators and Expressions - Input and Output in C - Decision
Statements - Loop Control Statements.

UNIT IV FUNCTIONS, ARRAYS AND STRINGS
Functions - Storage Class - Arrays - Working with strings and standard functions.

UNIT V POINTERS, STRUCTURES AND UNION
Pointers - Dynamic Memory allocation - Structure and Union - Files.

TOTAL : 45
TEXT BOOK

REFERENCES

CS 2131 COMPUTER PROGRAMMING LABORATORY
(Common to all branches)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

GOAL
To provide an awareness and to develop the programming skills using computer languages.

OBJECTIVES
The course should enable the students to:

1. To gain knowledge about Microsoft office, Spread Sheet.
2. To learn a programming concept in C.

OUTCOME
The students should be able to

1. Use MS Word to create document, table, text formatting and Mail merge options.
2. Use Excel for small calculations using formula editor, creating different types of charts and including pictures etc,
3. Write and execute the C programs for small applications.

LIST OF EXPERIMENTS

a) Word Processing
1. Document creation, Text manipulation with Scientific notations.
2. Table creation, Table formatting and Conversion.
4. Drawing- flow Chart

b) Spread Sheet
5. Chart - Line, XY, Bar and Pie.
6. Formula - formula editor.
7. Spread sheet - inclusion of object, Picture and graphics, protecting the document

c) Programming in C

8. To write a C program to prepare the electricity bill.
9. Functions
 (a) Call by value (b) Call by reference.
10. To write a C program to print the Fibonacci series for the given number.
11. To write a C program to find the factorial of number using recursion.
12. To write a C program to implement the basic arithmetic operations using Switch Case statement.
13. To write a C program to check whether the given number is an Armstrong number.
14. To write a C program to check whether the given string is a Palindrome.
15. To write a C program to create students details using Structures.
16. To write a C program to demonstrate the Command Line Arguments.
17. To write a C program to implement the Random Access in Files.
18. To write C programs to solve some of the Engineering applications

TOTAL : 45

HARDWARE/SOFTWARE REQUIRED FOR BATCH OF 30 STUDENTS

HARDWARE
LAN system with 33 nodes (OR) Standalone PCs - 33 Nos
Printers - 3 Nos

SOFTWARE
OS - Windows / UNIX
Application package - MS office
Software - C language
GOAL
To provide the students with hands on experience on various basic engineering practices in Civil and Mechanical Engineering.

OBJECTIVES
The course would enable the students to
1. Relate theory and practice of basic Civil and Mechanical Engineering
2. Learn concepts of welding and machining practice
3. Learn concepts of plumbing and carpentry practice

OUTCOME
The students should be able to
1. Identify and the use of tools, Types of joints used in welding, carpentry and plumbing operations.
2. Have hands on experience on basic fabrication techniques such as carpentry and plumbing practices.
3. Have hands on experience on basic fabrication techniques of different types of welding and basic machining practices and smithy operations.

LIST OF EXPERIMENTS
I. MECHANICAL ENGINEERING PRACTICE 15
 1. Welding
 Arc welding: Butt joints, Tee and lap joints.
 2. Basic Machining
 Facing, turning, threading and drilling practices using lathe and drilling operation with vertical drilling machine.
 3. Machine assembly practice Study of centrifugal pump
 4. Study on
 a. Smithy operations - Productions of hexagonal headed bolt.
II. CIVIL ENGINEERING

1. Basic pipe connection using valves, couplings, unions, reducers, elbows in household fitting.
2. Practice in mixed pipe connections: Metal, plastic and flexible pipes used in household appliances.
3. Wood work: Sawing, Planning and making common joints.
4. Study of joints in door panels, wooden furniture.

TOTAL: 45

List equipment and components

(For a Batch of 30 Students)

CIVIL

1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools:
 (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL

1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each
GOAL

The goal of the programme is to provide a practical input towards nurturing accomplished learners who can function effectively in the English language skills.

OBJECTIVES

The course should enable the students to

1. Extend the ability of the learners to be able to listen to English and comprehend its message.
2. Enable the learners to have a functional knowledge of spoken English.
3. Assist the learners to read and grasp the meaning of technical and non-technical passages in English.
4. Help the learners develop the art of writing without mistakes.
5. Expand the thinking capability of the learners so that they would learn how to view things from a different angle.

OUTCOME

The students should be able to

1. Listen to and evaluate English without difficulty and comprehend its message.
2. Develop a functional knowledge of spoken English so as to use it in the institution and at job interviews.
3. Read and comprehend the meaning of technical and non-technical passages in English.
4. Develop the art of writing so as to put down their thoughts and feelings in words.
5. Think independently and contribute creative ideas.

UNIT I LISTENING SKILL

Listening to conversations and interviews of famous personalities in various fields -- Listening practice related to the TV-- Talk shows - News - Educative programmes -- Watching films for critical comments - Listening for specific information - Listening for summarizing information - Listening to monologues for taking notes - Listening to answer multiple-choice questions.

UNIT II SPEAKING SKILL

Self-introduction -- Group discussion - Persuading and negotiating strategies - Practice in dialogues - Presentations based on short stories / poems -- Speaking on personal thoughts and feelings -academic topics - News reading - Acting as a compere -- Speaking about case studies on problems and solutions - Extempore speeches.
UNIT III READING SKILL
Reading anecdotes to predict the content - Reading for interpretation -- Suggested reading -- Short stories and poems -- Critical reading - Reading for information transfer - Reading newspaper and magazine articles for critical commentary - Reading brochures, advertisements, pamphlets for improved presentation.

UNIT IV WRITING SKILL
At the beginning of the semester, the students will be informed of a mini dissertation of 1000 words they need to submit individually on any non-technical topic of their choice. The parts of the dissertation will be the assignments carried out during the semester and submitted towards the end of the semester on a date specified by the department. This can be judged as part of the internal assessment.

UNIT V THINKING SKILL
Practice in preparing thinking blocks to decode diagrammatical representations into English words, expressions, idioms and proverbs - Inculcating interest in English using thinking blocks. Making pictures and improvising diagrams to form English words, phrases and proverbs -- Picture reading

REFERENCES

Websites for learning English
3. Intercultural: English Listening Lesson Library Online http://www.elllo.org/

Equipments required
1. Career Lab: 1 room
2. 2 Computers as a Server for Labs (with High Configuration)
3. LCD Projectors - 4 Nos
4. Headphones with Mic (i-ball) - 100 Nos
5. Speakers with Amplifiers, Wireless Mic and Collar Mic - 2 Sets
6. Teacher table, Teacher Chair - 1 + 1
7. Plastic Chairs - 75 Nos
<table>
<thead>
<tr>
<th>S.No.</th>
<th>List of Experiments</th>
<th>Batch 2 (30)</th>
<th>Batch 1 (30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Periods</td>
<td>Periods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L P L P</td>
<td>L P L P</td>
</tr>
<tr>
<td>1</td>
<td>Torsional Pendulum - Determination of rigidity modulus of the material of a wire.</td>
<td>1 1 3 2 1 3</td>
<td>3 1 3 4 1 3</td>
</tr>
<tr>
<td>2</td>
<td>Non Uniform Bending - Determination of Young's Modulus.</td>
<td>3 1 3 4 1 3</td>
<td>5 1 3 6 1 3</td>
</tr>
<tr>
<td>3</td>
<td>Viscosity - Determination of co-efficient of Viscosity of a liquid by Poiseuille's flow.</td>
<td>5 1 3 6 1 3</td>
<td>7 1 3 8 1 3</td>
</tr>
<tr>
<td>4</td>
<td>Lee's Disc - Determination of thermal conductivity of a bad conductor.</td>
<td>7 1 3 8 1 3</td>
<td>9 1 3 10 1 3</td>
</tr>
<tr>
<td>5</td>
<td>Air Wedge - Determination of thickness of a thin wire.</td>
<td>9 1 3 10 1 3</td>
<td>11 1 3 12 1 3</td>
</tr>
<tr>
<td>6</td>
<td>Spectrometer - Refractive index of a prism.</td>
<td>11 1 3 12 1 3</td>
<td>13 1 3 14 1 3</td>
</tr>
<tr>
<td>7</td>
<td>Semiconductor laser - Determination of wavelength of Laser using Grating.</td>
<td>13 1 3 14 1 3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7 21 7 21</td>
<td>56 Periods</td>
</tr>
</tbody>
</table>

LIST OF EQUIPMENTS REQUIRED FOR A BATCH OF 30 STUDENTS

1. Torsional Pendulum (500 gm, wt, 60 cm wire Al-Ni Alloy) 5 nos.
2. Travelling Microscope (X10) 15 nos.
3. Capillary tube (length 10cm, dia 0.05mm) 5 nos.
4. Magnifying lens (X 10) 15 nos.
5. Lee's disc apparatus (std form) 5 nos.
6. Stop watch (+/- 1 s) 5 nos.
7. Meter scale 1m length 5 nos.
<table>
<thead>
<tr>
<th>No.</th>
<th>Item Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Spectrometer (main scale 360 deg, ver 30")</td>
<td>5 nos.</td>
</tr>
<tr>
<td>9</td>
<td>Grating (2500 LPI)</td>
<td>5 nos.</td>
</tr>
<tr>
<td>10</td>
<td>Laser (632.8 nm)</td>
<td>5 nos.</td>
</tr>
<tr>
<td>11</td>
<td>Semi transparent glass plate Al coating, 65 nm thickness, 50% visibility</td>
<td>5 nos.</td>
</tr>
<tr>
<td>12</td>
<td>Equilateral prism (n = 1.54)</td>
<td>5 nos.</td>
</tr>
<tr>
<td>13</td>
<td>Thermometer +/- 1 deg</td>
<td>8 nos.</td>
</tr>
<tr>
<td>14</td>
<td>Screw gauge +/- 0.001 cm</td>
<td>12 nos.</td>
</tr>
<tr>
<td>15</td>
<td>Vernier caliper +/- 0.01 cm</td>
<td>8 nos.</td>
</tr>
<tr>
<td>16</td>
<td>Steam Boiler 1 L</td>
<td>5 nos.</td>
</tr>
<tr>
<td>17</td>
<td>Scale 50 cms</td>
<td>5 nos.</td>
</tr>
<tr>
<td>18</td>
<td>Cylindrical mass 100 gms</td>
<td>10 sets</td>
</tr>
<tr>
<td>19</td>
<td>Slotted wt 300 gms</td>
<td>5 sets</td>
</tr>
<tr>
<td>20</td>
<td>Heater 1.5 KW</td>
<td>5 nos.</td>
</tr>
<tr>
<td>21</td>
<td>Transformer sodium vapour lamp 1 KW</td>
<td>10 nos.</td>
</tr>
<tr>
<td>22</td>
<td>Sodium vapour lamp 700 W</td>
<td>5 nos</td>
</tr>
<tr>
<td>23</td>
<td>Burette 50 mL</td>
<td>5 nos</td>
</tr>
<tr>
<td>24</td>
<td>Beaker 250 mL</td>
<td>5 nos</td>
</tr>
<tr>
<td>25</td>
<td>Spirit level</td>
<td>10</td>
</tr>
</tbody>
</table>

REFERENCE

CY 2031 CHEMISTRY LABORATORY

<table>
<thead>
<tr>
<th>S.No.</th>
<th>List of Experiments</th>
<th>Batch 1 (30)</th>
<th>Batch 2 (30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Week</td>
<td>Periods</td>
</tr>
<tr>
<td>1</td>
<td>Estimation of Commercial soda by acid-base titration</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Determination of Percentage of nickel in an alloy</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Determination of Temporary, permanent and total hardness of water by EDTA method</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Determination of Chloride content in a water sample</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Potentiometric Estimation of iron</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Conductometric Titration of a strong acid with a strong base</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Conductometric Titration of mixture of acids.</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Determination of Degree of polymerization of a polymer by Viscometry</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total 60 Periods

List of Glassware and Equipment’s required for a batch of 30 students

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burett</td>
<td>(50 mL)</td>
</tr>
<tr>
<td>2</td>
<td>Pipette</td>
<td>(20 mL)</td>
</tr>
<tr>
<td>3</td>
<td>Conical Flask</td>
<td>(250 mL)</td>
</tr>
<tr>
<td>4</td>
<td>Distilled water bottle</td>
<td>(1 L)</td>
</tr>
<tr>
<td>5</td>
<td>Standard flask</td>
<td>(100 mL)</td>
</tr>
<tr>
<td>6</td>
<td>Funnel</td>
<td>(small)</td>
</tr>
<tr>
<td>7</td>
<td>Glass rod</td>
<td>20 cm length</td>
</tr>
<tr>
<td>8</td>
<td>Reagent Bottle</td>
<td>(250 mL)</td>
</tr>
<tr>
<td>9</td>
<td>Reagent Bottle</td>
<td>(60 mL)</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Material</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>10</td>
<td>Beaker (100 mL)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oswald Viscometer</td>
<td>Glass</td>
</tr>
<tr>
<td>12</td>
<td>Measuring Cylinder (25 mL)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Digital Conductivity Meter PICO make</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Conductivity cell (K=1)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Digital Potentiometer PICO make</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Calomel Electrode</td>
<td>Glass</td>
</tr>
<tr>
<td>17</td>
<td>Platinum Electrode Polypropylene</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Burette Stands</td>
<td>Wooden</td>
</tr>
<tr>
<td>19</td>
<td>Pipette stands</td>
<td>Wooden</td>
</tr>
<tr>
<td>20</td>
<td>Retard stands</td>
<td>Metal</td>
</tr>
<tr>
<td>21</td>
<td>Porcelain Tiles White</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Clamps with Boss heads Metal</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

SEMMESTER-II

MA 2201 ENGINEERING MATHEMATICS II

L T P C
3 1 0 4

GOAL
To create the awareness and comprehensive knowledge in engineering mathematics.

OBJECTIVES
The course should enable the students to:
1. Understand the evaluation of the double and triple integrals in Cartesian and polar forms.
2. Know the basics of Vector calculus.
3. Know Cauchy - Riemann equations, Milne - Thomson method and Conformal mapping
4. Grasp the concept of Cauchy's integral formula, Cauchy's residue theorem and contour integration.
5. Know Laplace transform and inverse Laplace transform and their properties.

OUTCOME
The students should be able to:
1. Find area as double integrals and volume as triple integrals in engineering applications.
2. Evaluate the gradient, divergence, curl, line, surface and volume integrals along with the verification of classical theorems involving them.
3. Applies analytic functions and their interesting properties in science and engineering.
4. Evaluate the basics of complex integration and the concept of contour integration which is important for evaluation of certain integrals encountered in practice.
5. Have a sound knowledge of Laplace transform and its properties and their applications in solving initial and boundary value problems.

UNIT I MULTIPLE INTEGRALS

Review: Basic concepts of integration - Standard results - Substitution methods - Integration by parts - Simple problems.

UNIT II VECTOR CALCULUS

Review: Definition - vector, scalar - basic concepts of vector algebra - dot and cross products-properties.

Gradient, Divergence and Curl - Unit normal vector, Directional derivative - angle between surfaces irrotational and solenoidal vector fields. Verification and evaluation of Green's theorem - Gauss
divergence theorem and Stoke's theorem. Simple applications to regions such as square, rectangle, triangle, cuboids and rectangular parallelopipeds.

UNIT III ANALYTIC FUNCTIONS

Review: Basic results in complex numbers - Cartesian and polar forms - Demoivre's theorem.

Functions of a complex variable - Analytic function - Necessary and sufficient conditions (without proof) - Cauchy - Riemann equations - Properties of analytic function - Harmonic function - Harmonic conjugate - Construction of Analytic functions by Milne - Thomson method. Conformal mapping: \(w = z + a, az, 1/z \) and bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Statement and application of Cauchy's integral theorem and Integral formula - Evaluation of integrals using the above theorems - Taylor and Laurent series expansions - Singularities - Classification. Residues - Cauchy's residue theorem (without proof) - Contour integration over unit circle and semicircular contours (excluding poles on boundaries).

UNIT V LAPLACE TRANSFORM

Laplace transform - Conditions of existence - Transform of elementary functions - properties Transforms of derivatives and integrals - Derivatives and integrals of transforms - Initial and final value theorems - Transforms of unit step function and impulse function - Transform of periodic functions. Inverse Laplace transform - Convolution theorem - Solution of linear ODE of second order with constant coefficients.

TOTAL: 60

Note: Questions need not be asked from review part.

TEXT BOOKS

REFERENCES

GOAL
To provide an understanding of the effects of forces, torques and motion on a variety of structures and vehicles.

OBJECTIVES
The course would enable the students to understand
1. The vector and scalar representation of forces and moments
2. Impart knowledge on static equilibrium of particles and rigid bodies both in two dimensions and also in three dimensions.
3. Understand the principle of work and energy.
4. The effect of friction on equilibrium, the laws of motion, the kinematics of motion and the interrelationship.
5. Write the dynamic equilibrium equation.

All these should be achieved both conceptually and through solved examples.

OUTCOME
After studying the course, the students should be able to
1. Apply the law of forces and Newton's 2nd law in determining motion and The dynamics of particles and vehicles
2. Implement vectors in mechanics problems and know about Energy and momentum conservation
3. Know the dynamics of a rigid body and its rotation and do the calculation and motion of the centre of mass of a system of particles
4. Use vectors to solve mechanics problems and develop particle and vehicle trajectory equations
5. Calculate the motion of rigid bodies and solving problems on engineering mechanics that arise on other modules of the course.

UNIT I BASICS & STATICS OF PARTICLES

UNIT II EQUILIBRIUM OF RIGID BODIES
Free body diagram - Types of supports and their reactions - Requirements of stable equilibrium
Static determinacy - Moments and Couples - Moment of a force about a point and about an axis
Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimensions - Equilibrium of Rigid bodies in three dimensions - Examples.

UNIT III FRICTION 12
Frictional force - Laws of Coulomb friction - Simple contact friction - Belt friction - Transmission of power through belts - Wedge Friction - Screw Jack - Rolling resistance.

UNIT IV PROPERTIES OF SURFACES AND SOLIDS 12
Determination of Areas and Volumes - Determination of first moment of area Centroid of sections, Second and product moments of plane area - Rectangle, circle, triangle, T section, I section, Angle section, Hollow section- Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia -Product moment of inertia.

UNIT V DYNAMICS OF PARTICLES 12
Displacements, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion

TOTAL : 60

TEXT BOOKS

REFERENCES

GOAL
To provide an understanding of the concept of manufacturing, machine tools, and machining process for producing various shaped products.

OBJECTIVE
The course would enable the students to understand

1. The fundamentals of cutting process
2. Nomenclature of various types of cutting tools.
3. The machining processes and the types of machine tools used to produce various shaped products
4. The principles of modern machining processes which are very much used in critical operations.

OUTCOME
After studying this course, the students would be able to

1. Select the machine tool, machining process and the cutting tool when confronted with machining difficult materials.
2. Apply the concept of unconventional machining processes depending on the demands of the situation.

UNIT I FUNDAMENTALS OF METAL CUTTING

UNIT II MACHINE TOOLS AND PROCESSES FOR PRODUCING ROUND SHAPES
Turning parameters-lathes and Lathe operations—Cutting screw threads—Boring and boring machines-Drilling and drills-Drilling machines-reaming and reamers-tapping and taps-Design considerations for drilling, reaming and tapping-Capstan and Turret lathe-single spindle and multi spindle automats-Swiss type and automatic screw machines.

UNIT III MACHINE TOOLS AND PROCESSES FOR PRODUCING VARIOUS SHAPES
Milling operations-Milling machines-Planning and shaping—roaching and broaching machines-Sawing-filing and finishing-gear manufactured by machining.
UNITIV ABRASIVE MACHINING AND FINISHING OPERATIONS

Abrasives- bonded abrasives- Grinding process-wheel gear grinding operations and machines- grinding fluids- Design Considerations for Grinding- finishing operations- deburring - economics of grinding and finishing operation.

UNITIV MODERN MACHINING PROCESSES

11
High speed machining- Ultraprecision Machining and Hard turning- Ultrasonic machining- Abrasive jet machining- Abrasive flow machining- Water jet machining- Electrochemical machining- Electric discharge machining- Wire Electric discharge machining- Electron beam machining- Laser beam Machining.

TOTAL: 45

TEXTBOOKS:

REFERENCES:

GOAL
To understand basic principles underlying the behavior of electrical circuits, electric power apparatus and measurement techniques.

OBJECTIVE
The course should enable the students to

1. Expose the students to the fundamental of electrical circuits, principles of operation of D.C. & A.C. machines, measurements and measuring instruments.

OUTCOME
The students should be able to

1. Understand the basic principles of electric circuits.
2. Know the construction details of electric machines.
3. Know the technique of measurement using voltmeter and ammeter.

UNIT I FUNDAMENTALS OF D.C. AND A.C. CIRCUITS

UNIT II D.C. AND A.C. MACHINES

Constructional details and operating principles of D.C. generators - e.m.f equation - type of generators - O.C.C. and load characteristics - principle and operation of D.C. motors - back e.m.f. - types of motors - speed and torque equation - load characteristics of D.C. motors - starting methods. Construction and operation of synchronous generators - types of synchronous machines - e.m.f equation - load characteristics - principle of operation of synchronous motors - starting methods simple problems.

UNIT III TRANSFORMERS

Constructional details and operation of single phase transformers - types of transformers - e.m.f equation - transformation ratio - transformer on no load and load - parameters of transformers referred to primary and secondary - equivalent circuits - regulation - losses and efficiency - simple problems in single phase transformers - introduction to three phase transformers - types of three phase connections.
UNIT IV INDUCTION MACHINES

Constructional details and principle of operation of three phase induction motor - types of three phase induction motors - e.m.f equation - rotor e.m.f and current at standstill and running conditions - slip torque characteristics - starting of induction motors- rotor resistance, auto transformer and star delta starters - losses and efficiency - simple problems. Construction and principle of operation of single-phase induction motors - starting methods - split phase and shaded pole types.

UNIT V MEASUREMENTS AND MEASURING INSTRUMENTS

Deflecting torque, controlling torque and damping torque in indicating instruments - construction and operating principles of moving coil and moving iron instruments - voltmeters and ammeters - construction and operating principles of induction type energy meters and dynamo meter type wattmeters - types of errors.

TOTAL : 60

TEXT BOOKS

REFERENCES
2. S. Parkar Smith, Problems in Electrical Engineering, Asia Publications.
LIST OF EXPERIMENTS

Electrical Engineering:
1. Wiring for a tube light. 6
2. Wiring for a lamp and fan. 6
3. Staircase wiring 3
4. Study of (i) Iron box and (ii) Fan with Regulator Electronics Engineering 6
5. Study of Electronic components and Equipment’s 3
6. Characteristics of PN junction diode & measurement of Ripple factor of half wave and full wave rectifier. 9
7. Applications of OP-AMP - Inverter, Adder and Subtractor. 9
8. Study and verification of Logic Gates 3

Components Required:

Electrical Engineering
Choke 2 nos
Starter 2 nos
Tubelight stand 2 nos
36W tubelight 2 nos
Fan 2 nos
40W lamp 5 nos
Single way switch 10 nos
Two way switch 5 nos
Iron box 2 nos
Fan with regulator opened 1 no (demo purpose)

Electronics Engineering
IC Trainer Kit, Resistors, Capacitors, CRO, Function Generator, Bread Board, Regulated Power Supply, Zener Diode, PN Junction Diode, Potentiometer, Digital Multi meter, Ammeter, Voltmeter, Wattmeter, IC 7408, IC 7432, IC 7486, IC 7400, IC 7404, IC 7402

TEXT BOOK
EE 2235 ELECTRICAL ENGINEERING LAB

L T P C
0 0 3 2

GOAL
To impart hands-on training to the students on various types of motors and controls

OBJECTIVES
The course should enable the students to
1. Impart knowledge on DC Motors and its load characteristics
2. Impart knowledge on Single phase transformers
3. Impart knowledge on AC Motors and its load characteristics
4. Impart knowledge on DC & AC Starters

LIST OF EXPERIMENTS
1. Load test on DC Shunt & DC Series motor
2. O.C.C & Load characteristics of DC Shunt and DC Series generator
3. Speed control of DC shunt motor (Armature, Field control)
4. Load test on single phase transformer
5. O.C & S.C Test on a single phase transformer
6. Regulation of an alternator by EMF & MMF methods.
7. V curves and inverted V curves of synchronous Motor
8. Load test on three phase squirrel cage Induction motor
9. Speed control of three phase slip ring Induction Motor
10. Load test on single phase Induction Motor.
11. Study of DC & AC Starters

TOTAL: 45

LIST OF EQUIPMENTS (for batch of 30 students)
1. DC Shunt motor - 2 nos
2. DC Series motor - 1 nos
3. DC shunt motor-DC Shunt Generator set - 1 no
4. DC Shunt motor-DC Series Generator set - 1 no
5. Single phase transformer - 2 nos
6. Three phase alternator - 2 nos
7. Three phase synchronous motor - 1 no
8. Three phase Squirrel cage Induction motor - 1 no
9. Three phase Slip ring Induction motor - 1 no
10. Single phase Induction motor - 1 no
GOAL
The goal of the programme is to provide an advanced practical input towards moulding student achievers who can use the English language with ease.

OBJECTIVES
The course should enable the students to:

1. Extend the power of the learners to listen to English at an advanced level and comment on it.
2. Guide the learners to speak English at the formal and informal levels.
3. Enable learners to read and grasp the in-depth meaning of technical and non-technical passages in English.
4. Help the learners develop the art of writing at the formal and informal levels.
5. Expand the thinking capability of the learners so that they would learn how to be original in their thoughts.

OUTCOME
At the end of the course the student should be able to:

1. Listen to and understand English at an advanced level and interpret its meaning.
2. Develop English at the formal and informal levels and thus gained the confidence to use it without fear.
3. Read and grasp the in-depth meaning of technical and non-technical passages in English.
4. Develop the art of formal and informal writing.
5. Think independently and creatively and also verbalize their thoughts fearlessly.

UNIT I LISTENING SKILL
Topics: Listening to telephonic conversations -- Listening to native British speakers -- Listening to Native American speakers -- Listening to intercultural communication -- Listening to answer questions as one-liners and paragraphs -- Listening practice to identify ideas, situations and people -- Listening to group discussions -- Listening to films of short duration.

UNIT II SPEAKING SKILL
Topics: Interview skills - People skills - Job interview - Body language and communication -- How to develop fluency -- Public speaking -- Speaking exercises involving the use of stress and intonation Speaking on academic topics - Brain storming & discussion - Speaking about case studies on problems and solutions - Extempore speeches - Debating for and against an issue - Mini presentations - Generating talks and discussions based on audiovisual aids.
UNIT III READING SKILL

Topics: Reading exercises for grammatical accuracy and correction of errors -- Reading comprehension exercises with critical and analytical questions based on context - Evaluation of contexts - Reading of memos, letters, notices and minutes for reading editing and proof reading -- Extensive reading of parts of relevant novels after giving the gist of the same.

UNIT IV WRITING SKILL

Topics: At the beginning of the semester, the students will be informed of a mini dissertation of 2000 words they need to submit individually on any non-technical topic of their choice. The parts of the dissertation will be the assignments carried out during the semester and submitted towards the end of the semester on a date specified by the department. This can be judged as part of the internal assessment.

UNIT V THINKING SKILL

Topics: Practice in preparing thinking blocks to decode pictorial representations into English words, expressions, idioms and proverbs - Eliciting the knowledge of English using thinking blocks -- Picture rereading -- Finding meaning in the meaningless - Interpreting landscapes, simple modern art and verbal and non-verbal communication.

TOTAL: 45

REFERENCES

WEBSITES FOR LEARNING ENGLISH

1. British: Learn English - British Council (Business English) - <http://learnenglish.britishcouncil.org>
2. BBC Learning English (General and Business English) - <http://www.bbc.co.uk/worldservice/learningenglish>
3. Intercultural: English Listening Lesson Library Online http://www.elllo.org/

Equipments required

1. Career Lab:1 room
2. 2 Computers as a Server for Labs (with High Configuration)
3. LCD Projectors - 4 Nos
4. Headphones with Mic (i-ball) - 100 Nos
5. Speakers with Amplifiers, Wireless Mic and Collar Mic - 2 Sets
6. Teacher table, Teacher Chair - 1 + 1
7. Plastic Chairs - 75 Nos
GOAL
To develop the skills of the students in the areas of boundary value problems and transform techniques

OBJECTIVES
The course should enable the students to

1. Develop the skills of the students in the areas of boundary value problems and transform techniques.
2. Gain knowledge in a large number of engineering subjects like heat conduction, communication systems, electro-optics and electromagnetic theory.
3. Serve as a prerequisite for post graduate and specialized studies and research.

OUTCOME
The students should be able to

1. Formulate certain practical problems in terms of partial differential equations, solve them and physically interpret the results.
2. Have gained a well-founded knowledge of Fourier series, their different possible forms and the frequently needed practical harmonic analysis that an engineer may have to make from discrete data.
3. Have obtained capacity to formulate and identify certain boundary value problems encountered in engineering practices, decide on applicability of the Fourier series method of solution, solve them and interpret the results
4. Have grasped the concept of expression of a function, under certain conditions, as a double integral leading to identification of transform pair, and specialization on Fourier transform pair, their properties, the possible special cases with attention to their applications.
5. Have learnt the basics of Z-transform in its applicability to discretely varying functions gained the skill to formulate certain problems in terms of difference equations and solve them using the Z-transform technique bringing out the elegance of the procedure involved

UNIT I PARTIAL DIFFERENTIAL EQUATIONS
Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions
Solution of standard types of first order partial differential equations - Lagrange's linear equation linear partial differential equations of second and higher order with constant coefficients.

UNIT II FOURIER SERIES
Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier Series - Parseval's identify - Harmonic Analysis.
UNIT III BOUNDARY VALUE PROBLEMS 12
Classification of second order linear partial differential equations - Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates.

UNIT IV FOURIER TRANSFORM 12
Fourier integral theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem.

UNIT V Z -TRANSFORM AND DIFFERENCE EQUATIONS 12
Z-transform - Elementary properties - Inverse Z - transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z - transform.

TOTAL: 60 TEXT

BOOK

REFERENCES
GOAL
To make the students aware of various Energy conversion processes in the context of Industrial requirements and introduce the laws of Thermodynamics.

OBJECTIVES
The course should enable the students to

1. Understand the energy conversion processes involving heat, work and energy storage.
2. The application of thermodynamic principles to the propulsion of land, sea and air transport and in the generation of power.
3. Analysis various thermal processes and plant.
4. Identify information requirements and sources for analysis and evaluation
5. Synthesize information and ideas for use in the evaluation process.

OUTCOME
The students should be able to

1. Analyze and solve problems in a methodical fashion.
2. Relate the concepts of Energy (Heat & Work) in real life situations and Apply energy transformation in flow & non flow processes.
3. Understand the concepts of degradation of energy and its effect in practical applications
4. Understand the concepts of sensible heat, Latent heat and to understand the fundamentals of ideal and real gases and its properties.
5. Learn laws of ideal and real gases, gas mixtures and their properties.

UNIT I BASIC CONCEPTS 12
Applications of thermodynamics: Thermodynamic systems, concepts of continuum, some basic definitions, open and closed systems, processes, cycle, Thermodynamic properties, state and equilibrium. Definitions of heat and work, sign conventions, determination of work during different processes, temperature, zeroth law of thermodynamics.

UNIT II FIRST LAW OF THERMODYNAMICS 12
The First Law for closed systems. Work and heat during cyclic and non-cyclic processes. Specific heats, internal energy and enthalpy for ideal gases.

The First Law for open systems. The steady flow energy equation. Application to boiler, nozzles, throttles, turbines and heat exchangers.

UNIT III SECOND LAW OF THERMODYNAMICS 12
Definition of the heat engine and cycle efficiency. The Carnot heat engine; Reversed heat engines (heat pump and refrigerator) and coefficient of performance.

UNIT IV PROPERTIES OF PURE SUBSTANCE
Thermo dynamic properties of pure substances, property diagram, PVT surface of water and other substances, calculation of properties, first law and second law analysis using tables and charts,

UNIT V IDEAL & REAL GASES AND THERMODYNAMIC RELATIONS
Gas mixtures - Properties of ideal and real gases, equation of state, Avogadro’s law, Vander Waal's equation of states, compressibility, compressibility chart. Dalton's law of partial pressure, Exact differentials, T-D relations, Maxwell relations, Claudius Clapeyron equations, Joule Thomson Coefficient.

TOTAL: 60

TEXT BOOKS
2. Rogers and Mayhew, Thermodynamic and Transport Properties of Fluids, Basil Blackwell

REFERENCES
GOAL

To make the students aware of

1. The concepts of properties of Fluid flow.

2. The types of various Fluid Machineries and their principles of working & applications.

OBJECTIVES

The course should enable the student to:

1. Understand the properties of fluid.
2. Understand the properties of flow.
3. Understand the principles of Bernoulli’s Theorem.
4. Understand the details and theory behind Water turbines

Learn the details and theory behind centrifugal and reciprocating pumps

OUTCOME

After studying this course, students would be able to:

1. Relate to the properties of fluid.
2. Describe how the different flows can be analyzed and measured.
3. Describe the principles and application of Bernoulli’s theorem
4. Know about the construction details and operators of Hydraulic Turbines and Pumps.
5. Conduct the experiments on Fluid Machinery and to know about the Cavitation Phenomena and its effect.

UNIT I BASIC CONCEPTS AND PROPERTIES 12

Fluid - definition, distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, Vapour pressure, capillary and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges.

UNIT II FLUID KINEMATICS AND FLUID DYNAMICS 12

Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms) - Equation of streamline - stream function - velocity potential function - circulation - flow net – fluid dynamics - equations of motion - Euler's equation along a streamline - Bernoulli’s equation – applications -
Venturi meter, Orifice meter, Pitot tube - dimensional analysis - Buckingham's \(\pi \) theorem- applications - similarity laws and models.

UNIT III INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier - Stoke's equation (Statement only) - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's)- Hydraulic and energy gradient - flow through pipes - Darcy -weisback's equation - pipe roughness -friction factor - Moody's diagram-minor losses - flow through pipes in series and in parallel - power transmission - Boundary layer flows, boundary layer thickness, boundary layer separation - drag and lift coefficients.

UNIT IV HYDRAULIC TURBINES

Fluid machines: definition and classification - exchange of energy - Euler's equation for turbo machines - Construction of velocity vector diagram's - head and specific work - components of energy transfer - degree of reaction.

UNIT V HYDRAULIC PUMPS

Pumps: definition and classifications - Centrifugal pump: classifications, working principles, velocity triangles, specific speed, efficiency and performance curves - Reciprocating pump: classification, working principles, indicator diagram, work saved by air vessels and performance curves - cavitation’s in pumps - rotary pumps: working principles of gear and vane pumps

TOTAL: 60

TEXT BOOKS

REFERENCES

GOAL: To make the students aware of properties of materials, morphology and their behavior is Industrial applications.

OBJECTIVE:
By studying this course the students would be able to

1. Appreciate the relationship between the properties and the internal structures of materials
2. Acquire knowledge in the selection of materials for intended application requirements.

OUTCOME:
1. After studying this course the students would be able to relate the mechanical properties to its internal lattice and Micro structures.
2. The types of materials available for various industrial applications.

UNITI MECHANICAL PROPERTIES

UNITII PHASE DIAGRAMS
Solid solutions-Hume Rothery’s rules-free energy of solid solution-inter media tephases The phase rule-single component system-one-component system of iron-binary phase diagrams-iso morphous systems-theid-linerule-thelevelrule-application toisomorphous system-eutectic phase diagram-peritectic phase diagram-other in variant reactions- micro structural change during cooling.

UNITIII FERROUS ALLOYS AND HEAT TREATMENT
UNITIV ELECTRONIC MATERIALS

UNITIV NEW MATERIALS AND APPLICATIONS

TOTAL: 45

TEXTBOOKS:

REFERENCE BOOKS:

ME 2304 METROLOGY & MEASUREMENTS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To understand the principles of metrology and measurements, methods of measurement and its application in manufacturing industries.

OBJECTIVES
The course should enable the students to

1. Focus on issues related to accuracy, selection
2. Learn calibration of measuring Instruments
3. Select and use various measuring instruments used in workshops and other applications.
4. Understand the advanced concepts involved in measuring Technology (measurements)
OUTCOME
The students should be able to
1. Use precision measurement instruments found in a workshop (metrology)
2. Examine the design critically and to understand the use of precision measuring instruments commonly found in various applications.
3. Select the right measuring tool with decided accuracy for a given application
4. Appreciate the importance of accuracy and its effects on results and its uncertainty

UNIT I CONCEPT OF MEASUREMENT
General concept - Generalized measurement system-Units and standards-measuring instruments sensitivity, readability, range of accuracy, precision-static and dynamic response- repeatability systematic and random errors-correction, calibration, interchangeability.

UNIT II LINEAR AND ANGULAR MEASUREMENT
Definition of Metrology - Linear measuring instruments: Vernier, Micrometer, internal measurement, Slip gauges and classification, Interferometer, optical flats, limit gauges.

Comparators: Mechanical, pneumatic and electrical types, applications.
Angular measurements: Sine bar, optical level protractor, angle Decker - Taper measurements

UNIT III FORM MEASUREMENT
Measurement of screw threads-Thread gauges, floating carriage micrometer-measurement of gear tooth thickness-constant chord and base tangent method-Gleason gear testing machine - radius measurements-surface finish, straightness, and flatness and roundness measurements.

UNIT IV LASER AND ADVANCES IN METROLOGY
Precision instruments based on laser-Principles- Laser Interferometer-application in linear, angular measurements and machine tool metrology Coordinate measuring machine (CMM) - Constructional features - types, applications - digital devices- computer aided inspection.

UNIT V MEASUREMENT OF POWER, FLOW AND TEMPERATURE RELATED PROPERTIES

TOTAL: 45

TEXT BOOKS

REFERENCES
LISTOFEXPERIMENTS

1. Calibration of Board on tube Pressure Gauge.
3. Determination of the Coefficient of discharge of given Orifice meter.
4. Determination of the Coefficient of discharge of given Venturi meter.
5. Calculation of the rate of flow using Rota meter.
6. Application of Bernoulli equation for in compressible flow.
7. Determination of friction factor for a given set of pipes.
8. Conducting experiments to find the laminar to turbulent transition for a flow in a pipe.
9. Determination of surface pressure distribution for flow over cylinder and aero foil.

LISTOFEQUIPMENTS (forabatchof30students)

2. Orifice meter setup
3. Venturi meter setup
4. Rota meter setup
5. Fluid Friction Apparatus
7. Wind Tunnel

Quantity: one each.
GOAL
To impart knowledge on Mechanics of metal cutting & Machining Operations

OBJECTIVES
The course should enable the students to
1. Learn the Applications of mechanics of metal cutting
2. Have knowledge on milling and drilling and grinding operations
3. Introduce the CNC Machine.

OUTCOME
The students should be able to
1. Select the right tool, machining condition and relevant measurement
2. Know the methods and applications of various machining operations
3. Understanding the CNC hardware and CNC Programming

EXERCISES
1. Two or More Metal Cutting Experiments (Example: Shear Angle Measurement, Cutting Force Measurement, Cutting Temperature Measurement, Tool Wear Measurement, Life Measurement etc.)
2. One or More Exercises in Milling Machines (Example: Milling Polygon Surfaces, Gear milling, Keyway milling, Helical Groove milling etc.)
3. Two or More Exercises in Grinding / Abrasive machining (Example: Surface Grinding, Cylindrical Grinding, and Centre less Grinding, Lapping, and Honing etc.)
4. Two or More Exercises in Machining Components for Assembly of different fits. (Example: Machining using Lathes, Shapers, Drilling, Milling, Grinding Machines etc.)
5. One or More Exercises in Capstan or Turret Lathes
6. One or More Exercises in Gear Machining (Example: Gear Cutting, Gear Shaping, Gear Hobbing etc.)
7. One or More Exercises in CNC Machines (Example: CNC Programming, CNC Tooling, CNC Machining etc.)

TOTAL: 45

LIST OF EQUIPMENTS
(for a batch of 30 students)
1. Centre Lathes - 15 No (5 Precision Type)
2. Turret and Capstan Lathe - 1 No each
3. Horizontal Milling Machine - 1 No
4. Vertical Milling Machine - 1 No
5. Surface Grinding Machine - 1 No
6. Tool Dynamometer - 1 No
7. Gear Hobbing Machine - 1 No
8. CNC Lathe (Trainer or Industrial Type) - 1 No
GOAL
To impart the knowledge about various measurement techniques

OBJECTIVES
The course should enable the students to
1. Study of calibrations of measuring devices
2. Measurement of form, angle, thread etc.,
3. Measurement of force, Torque, Vibration etc.,

OUTCOME
The students should be able to
1. Understand the Calibration procedures
2. Gain knowledge about form, angle and thread measurement.
3. Know the procedures / Techniques to measures temperature, Torque, Vibration etc.,

LIST OF EXPERIMENTS
1. Calibration of Vernier / Micrometer / Dial Gauge
2. Checking Dimensions of part using slip gauges
3. Measurements of Gear Tooth Dimensions
4. Measurement of Taper Angle using sine bar / Tool Makers microscope
5. Measurement of straightness and flatness
6. Measurement of thread parameters
7. Checking the limits of dimensional tolerances using comparators (Mechanical / Pneumatic / Electrical)
8. Measurement of Temperature using Thermocouple / Pyrometer
9. Measurement of Displacement (Strain Gauge / LVDT / Wheatstone Bridge)
10. Measurement of Force
11. Measurement of Torque
12. Measurement of Vibration / Shock

TOTAL: 45

LIST OF EQUIPMENTS
(for a batch of 30 students)
1. Micrometer - 5 nos
2. Vernier Caliper - 5 nos
<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Vernier Height Gauge</td>
<td>2 nos</td>
</tr>
<tr>
<td>4.</td>
<td>Vernier Depth Gauge</td>
<td>2 nos</td>
</tr>
<tr>
<td>5.</td>
<td>Slip Gauge Set</td>
<td>1 no</td>
</tr>
<tr>
<td>6.</td>
<td>Gear Tooth Vernier</td>
<td>1 no</td>
</tr>
<tr>
<td>7.</td>
<td>Sine Bar</td>
<td>2 nos</td>
</tr>
<tr>
<td>8.</td>
<td>Bevel Protractor</td>
<td>1 no</td>
</tr>
<tr>
<td>9.</td>
<td>Floating Carriage Micrometer</td>
<td>1 no</td>
</tr>
<tr>
<td>10.</td>
<td>Profile Projector</td>
<td>1 no</td>
</tr>
<tr>
<td>11.</td>
<td>Mechanical / Electrical / Pneumatic Comparator</td>
<td>1 no</td>
</tr>
<tr>
<td>12.</td>
<td>Temperature Measuring Setup</td>
<td>1 no</td>
</tr>
<tr>
<td>13.</td>
<td>Displacement Measuring Setup</td>
<td>1 no</td>
</tr>
<tr>
<td>14.</td>
<td>Force Measuring Setup</td>
<td>1 no</td>
</tr>
<tr>
<td>15.</td>
<td>Torque Measuring Setup</td>
<td>1 no</td>
</tr>
<tr>
<td>16.</td>
<td>Vibration / Shock Measuring Setup</td>
<td>1 no</td>
</tr>
</tbody>
</table>
GOAL
To make the students to understand and practice Machine Drawing and to expose to Computer Aided Drafting.

OBJECTIVES
The course should enable the students to

1. Understanding limits, Fits and Tolerances.
2. Understanding CAD and AUTOCAD
3. Explaining and Sketching Valves, Cocks and Plugs.
4. Various parts of Machinery.

OUTCOME
The students should be able to

1. Understand the drawing conventions
2. Gain sufficient knowledge on Limits, Fits and Tolerances and their representation in the drawing
3. Have sufficient knowledge in CAD softwares and their use.

UNIT I EXPLANATION AND SKETCHING OF THE FOLLOWING ASPECTS 10
Dimensioning conventions of shafts, arcs, angles, holes, tapers, riveted & welded joints, threads and pipes.

Conventional representation of metals and materials. Sectioning Conventions, removed sections and revolved sections, parts not usually sectioned, Conventions of gears, helical, leaf and torsional springs.

UNIT II LIMITS, FITS AND TOLERANCES 10
Limits and tolerances, Surface Finish, Type of fits - Description, Hole basis System and Shaft basis system, calculations involving minimum and maximum clearances for given combination of tolerance grades- Simple problems, Geometric tolerances

UNIT III CAD DRAWING
Introduction to Computer Aided Drafting. Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) - Creation of simple figures like polygon and general multi-line figures. Drawing of a Title Block with necessary text and projection symbol.
UNIT IV 3D - MODELING 20

Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.

Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

UNIT V MACHINERY COMPONENT DRAWING 20

Drawing of complete machine components in assembly (Orthographic to isometric and isometric to Orthographic) with details like couplings, Glands, Return and non-return valves, cocks & plugs, cylinder, Boiler mountings - Full bore safety valve, Blow down cock, Gauge glass, Main stop valve.

TOTAL: 60

TEXT BOOK

REFERENCES

WEB SITES:

SEMESTER - IV

PE 2401 CASTING AND WELDING TECHNOLOGY

L T P C
3 0 0 3

OBJECTIVE:

• To study various casting and welding methods including advanced techniques, with emphasis on basic principles, limitations and application areas.

UNIT I INTRODUCTION OF CASTING

Patterns: Making - materials, types, allowances pattern making - Moulding: materials, equipment, sand preparation, testing and control - Cores and core making - Design considerations in casting, gating system - Melting furnaces - directional solidification in castings, Metallurgical aspects of Casting - Steps involved in casting.

UNIT II CASTING PROCESSES

Casting processes: Steps, Advantages, limitations and applications of Sand castings, pressure die casting, permanent mould casting, centrifugal casting, precision investment casting, shell Moulding, CO₂ Moulding, continuous casting, squeeze casting, Fettling and finishing, casting defects and Inspection.

UNIT III INTRODUCTION TO WELDING

UNIT IV WELDING PROCESSES

UNIT V AUTOMATION OF WELDING AND CASTING

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCE
S:

EC 2411 ELECTRONICS AND MICROPROCESSOR

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To impart familiarity with electronic circuit design principles so that mechanical engineers can design and understand simple circuits and can interact effectively with electronic engineers.

OBJECTIVES
The course should enable the students to

2. Analog and Digital Converters and their applications.
3. Learn about Electronic Instruments
4. Understand the concepts involved in Micro Processors.

OUTCOMES
The students should be able to

1. Demonstrate a good grounding in the subject area of electronics
2. Feel suitably prepared for specialist options involving the use of electronics in future studies and a career as a practicing engineer.
3. Appreciate the methods used in experimentation involving electronic circuits
4. understand the utilization of test and measurement equipment appropriate to this subject

UNIT I OPERATION AMPLIFIER THEORY

Concept of Differential Amplifiers - its use in DP AMPS, Linear OP amp circuits.
UNIT II DIGITAL CIRCUITS

ITL & CMOS GATES:
Digital integrated circuits - Semiconductor memories - ROM - RAM and PROM.

UNIT III ELECTRONIC INSTRUMENTS
Converters; (A-D and D-A): Analog to Digital and Digital to Analog Converters and their use in Data Loggers.
Electronic instruments: Cathode Ray Oscilloscope - digital voltmeters and frequency meters Multimeters - Vacuum Tube voltmeter and signal Generators - Q-Meters., Transducers for vibration, pressure, volume, velocity measurement.

UNIT IV INDUSTRIAL ELECTRONICS
Power rectification - silicon control rectifier power control - Photoelectric devices - invertors. Satellite communication as applicable to GMDSS, GPS, Inmarsat.

UNIT V MICROPROCESSORS
8085 Architecture - Programming - interfacing and Control of motors - Temperature/Speed control.

TOTAL: 45

TEXT BOOKS
2. E. Hughes, Hughes , Electrical and electronic technology, Pearson Educational
3. Horowitz and Hill, The Art of Electronics, CUP.

REFERENCES
GOAL:
To familiarize the students with the recent manufacturing Technology

OBJECTIVES:
By studying this course the student will be able to understand

1. The contribution of computer technology is precision manufacturing
2. The structure by CNC machines
3. The programming skills
4. The various types of tools and work holding devices to be used in CNC machining of a components

OUTCOME:
After studying this course the student would have learnt

1. The CNC programmes and apply it is actual use
2. The selection o tools and work holding devices required to do machining in a CNC machine
3. The types of CNC machines available and the operations involved.

UNITI INTRODUCTION TO CNC MACHINE TOOLS 6
Evolution of CNC Technology, principles, features, advantages, applications, CNC and DNC concept, types of control systems, CNC controllers, characteristics, interpolators, types of CNC Machines–turning center, machining center, grinding machine, EDM, Computer Aided Inspection,

UNITII STRUCTURE OF CNC MACHINE TOOL 10
CNC Machine building, structural details, configuration and design, guide ways–Friction, Anti friction and other types of guide ways, elements used to convert the rotary motion to a linear motion–Screw and nut, recirculating ballscrew, planetary rollerscrew, recirculating roller crew, rack and pinion, spindle assembly, torque transmission elements–gears, timing belts, flexible couplings, Bearings.

UNITIII DRIVES AND CONTROLS 9
UNITIV CNC PROGRAMMING

Coordinate system, structure of apart program, G&M Codes, tool length compensation, cutter radius and tool nose radius compensation, do loops, subroutines, canned cycles, mirror image, para metric programming, machining cycles, programming or machining center and turning center for well-known controllers such as Fanuc, Heidenhain, Sinumerik etc., generation of CNC codes from CAM packages.

UNITIV TOOLING AND WORK HOLDING DEVICES

Introduction to cutting tool materials—Carbides, Ceramics, CBN, PCD—inserts classification—qualified, semi qualified and preset tooling, tooling system for Machining center and Turning center, Tool for complete machining system, work holding devices for rotating and fixed work parts, economics of CNC, maintenance of CNC machines.

TOTAL: 45

TEXTBOOKS:

REFERENCE BOOKS:

GOAL
Understand the basic concepts and techniques, both theoretical and experimental, with emphasis on the application of these to the solution of suitable problems in engineering. Provide a firm foundation for more advanced study.

OBJECTIVES
The course should enable the students to
1. Gain knowledge of simple stresses, strains and deformations components due to external loads.
2. Assess stresses and deformations through mathematical models of beams, twisting bars or combination of both.
3. Provide the Basic knowledge for use in the design courses.

OUTCOME
The students should be able to
1. Understand the basic principles of structural elasticity, including statically determinate and indeterminate systems, and the factors which affect their strength and stiffness.
2. Assess the strength and stiffness of simple structural components.
3. Apply the effect of stress and deformation concepts in practical applications.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS
Rigid and Deformable bodies - Strength, Stiffness and Stability - Stresses; Tensile, Compressive and Shear - Deformation of simple and compound bars under axial load - Thermal stress - Elastic constants - Strain energy and unit strain energy - Strain energy in uniaxial load.

UNIT II BEAMS - LOADS AND STRESSES
Types of beams: Supports and Loads - Shear force and Bending Moment in beams - Cantilever, Simply supported and Overhanging beams - Stresses in beams - Theory of simple bending - Stress variation along the length and in the beam section - Effect of shape of beam section on stress induced - Shear stresses in beams.

UNIT III TORSION
Analysis of torsion of circular bars - Shear stress distribution - Bars of Solid and hollow circular section - Stepped shaft - Twist and torsion stiffness - Compound shafts - Fixed and simply supported shafts - Application to close-coiled helical springs - Maximum shear stress in spring section including Wahl Factor - Deflection of Close-coil helical springs under axial loads - Design of helical coil springs - stresses in helical coil springs under torsion loads

UNIT IV BEAM DEFORMATION
Elastic curve of Neutral axis of the beam under normal loads - Evaluation of beam deflection and slope: Double integration method, Macaulay Method, and Moment-area Method -Columns - End conditions - Equivalent length of a column - Euler equation - Slenderness ratio - Rankine formula for columns

UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS
Biaxial state of stresses - Thin cylindrical and spherical shells - Deformation in thin cylindrical and spherical shells - Biaxial stresses at a point - Stresses on inclined plane - Principal planes and stresses - Mohr's circle for biaxial stresses - Maximum shear stress - Strain energy in bending and torsion.

TOTAL: 60 TEXT

BOOKS

REFERENCES

ME 2403 MECHANICS OF MACHINES - I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

GOAL
To provide an understanding of the kinematics and kinetics of simple machine elements and devices.

OBJECTIVES
The course should enable the students to

1. Know the variety of elements employed within a modern complex machine, such as an automobile, together with some historical precedents.
2. Rigid body dynamics (kinematics) of linkages, design of four bar mechanisms,
3. The direct relevance of problems discussed to engineering practice and validation of certain theoretical models through laboratory experiments.

OUTCOME
The students should be able to

1. Understand the existing theory of mechanism, together with its shortcomings, the concepts of mobility, degrees of freedom and inertia and be able to understand how these apply to simple mechanisms and machines;
2. Calculate forces and accelerations in mechanisms
3. Apply typical analytical and graphical techniques, reinforcing and expanding Part I learning, to a variety of mechanical engineering components and systems
UNIT I BASICS OF MECHANISMS

UNIT II KINEMATICS
Displacement, velocity and acceleration - analysis in simple mechanisms - Graphical Method velocity and acceleration polygons - Kinematic analysis by Complex Algebra methods-Vector Approach, Computer applications in the kinematic analysis of simple mechanisms-Coincident points- Coriolis Acceleration.

UNIT III CAMS
Classifications - Displacement diagrams-parabolic, Simple harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion - Pressure angle and undercutting.

UNIT IV GEARS
Spur gear Terminology and definitions-Fundamental Law of toothed gearing and involute gearing-Inter changeable gears-gear tooth action - Terminology - Interference and undercutting- Nonstandard gear teeth-Helical, Bevel, Worm, Rack and Pinion gears (Basics only)-Gear trains- Parallel axis gear trains- Epicyclic gear trains-Differentials

UNIT V FRICTION
Surface contacts-Sliding and Rolling friction - Friction drives - Friction in screw threads - Friction clutches - Belt and rope drives, Friction aspects in Brakes - Friction in vehicle propulsion and braking.

TOTAL: 60

TEXT BOOKS

REFERENCES
2. Thomas Bevan, Theory of Machines, CBS Publishers and Distributors, 2002
GOAL
To Introduce the Basic electronic components to the Mechanical students

OBJECTIVE
The course should enable the students to

1. Demonstrate the characteristics of Diode, Transistor, Wein Bridge oscillator and logic gates

Outcome
The students should be able to

1. Understand the concepts and working of electronic components and able to appreciate their role in Mechanical Engineering.

LIST OF EXPERIMENTS

ELECTRONICS

1. VI Characteristics of PN Junction Diode
2. VI Characteristics of Zener Diode
3. Characteristics of CE Transistor
4. Characteristics of JFET
5. Characteristics of Uni Junction Transistor
6. RC or Wein Bridge Oscillator
7. Study of Logic Gates (Basic Gates)
8. Half Adder and Full Adder
9. Shift Registers and Counters
10. Operational Amplifier (Adder, Subtract or, Differentiator, Integrator, Inverting and Non-Inverting

MICROPROCESSOR

1. Block Transfer
2. 8 bit Addition, Subtraction
3. Multiplication and Division
4. Maximum and Minimum of block of data
5. Sorting
6. Stepper Motor Interfacing

TOTAL: 45 LIST OF EQUIPMENTS (for a batch of 30 students)
1. Voltmeters - 5 No.
2. Ammeters - 5 No.
4. Digital Logic Trainer Kits - 1 No.
5. Breadboards - 1 No.
7. D/A Converter Interface - 1 No.
8. Stepper Motor Interface - 1 No.
9. CRO - 1 No.
10. Waveform Generator - 1 No.
11. MultiMate - 1 No.
GOAL
To understand the properties of materials and metals and how to measure the same

OBJECTIVES
The course should enable the students to
1. Gain knowledge on different metals used in mechanical applications.
2. Understand the importance of strength of different components like springs, beams etc.
3. Understand the heat treatment process which alters the properties of materials.

OUTCOME
The students should be able to
1. Conduct experiments to find out different properties of metals and alloys
2. Compare the properties of metals before and after the heat treatment.

LIST OF EXPERIMENTS
1. Tension test on a mild steel rod
2. Double shear test on Mild steel and Aluminium rods
3. Torsion test on mild steel rod
4. Impact test on metal specimen
5. Hardness test on metals - Brinell and Rockwell Hardness Number
6. Deflection test on beams
7. Compression test on helical springs
8. Strain Measurement using Rosette strain gauge
10. Tempering- Improvement Mechanical properties Comparison
 (i) Unhardened specimen
 (ii) Quenched Specimen and
 (iii) Quenched and tempered specimen.
11. Microscopic Examination of
 (i) Hardened samples and
 (ii) Hardened and tempered samples.
LIST OF EQUIPMENTS (for a batch of 30 students)

1. Universal Tensile Testing machine with double shear attachment - 40 Ton Capacity - 1 No
2. Torsion Testing Machine (60 NM Capacity) - 1 No
3. Impact Testing Machine (300 J Capacity) - 1 No
4. Brinell Hardness Testing Machine - 1 No
5. Rockwell Hardness Testing Machine - 1 No
6. Spring Testing Machine for tensile and compressive loads (2500 N) - 1 No
7. Metallurgical Microscopes - 3 Nos
8. Muffle Furnace (800°C) - 1 No

TOTAL: 45
GOAL
To provide practical knowledge on the various components design and manufacturing aspects of a commercially available Mechanical utility.

OBJECTIVE
The course should enable the students to
1. Expose the students to actual design aspects by providing hands on skills.

OUTCOME
The students should be able to
1. Identify various components, materials used, manufacturing process involved and assembly and dismantle of that commercial object.

Exercises:
• To Dismantle and identify the various components, material used, manufacturing process involved and to assemble the following components
 • Bicycle / Lathe Components / Gear Box / Two wheeler Engine

Sessional marks will include
• (a) Evaluation of the student's progress, • (b) Degree of involvement and participation,
• (c) Merit of the project.
• A student will have to defend his project/thesis and credit will be given on the merit of viva-voce examination.
SEMESTER V

ME 2501 DESIGN OF MACHINE ELEMENTS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

GOAL
To expose the students in

1. The various steps involved in the Design Process
2. Understanding the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
3. Learning to use standard practices and standard data learning to use catalogues and standard machine components

OBJECTIVES
The course should enable the students to:

1. Apply engineering analysis principles and methods to the proper analysis of a variety of common mechanical system components.
2. Design these mechanical system components so as to perform safely their intended functions in harmony with other components of the system.
3. Use information resources to identify appropriate and elegant component solutions for mechanical system design problems, locate sources for these components, and understand the analysis and design methods for these components.
4. Confirm with the right codes and standards
5. Work in teams to analyze and design various types of brakes and clutches and present their designs orally and in writing.
6. Identify the characteristics of their designs that have safety and environmental impact.

OUTCOME
The students should be able to:

1. Analyze and design power screws with respect to torque requirements, overhauling, and column buckling.
2. Analyze and design bolted connections with respect to static and dynamic axial loads.
3. Analyze and design bolted riveted, pinned, welded, brazed, soldered, and glued joints with respect to static and dynamic shear and bending loads.
4. Analyze and design full cylindrical hydrodynamic bearings using design charts and custom software.
5. Compute equivalent radial loads for rolling contact bearings and select appropriate bearings for the application using printed and electronic catalogue data.
6. Analyze and design spur gears with respect to tooth bending strength and surface strength specifications and apply three different theories to the design of shafts subject to combined static and dynamic loads.
UNIT I INTRODUCTION TO THE DESIGN PROCESS

Factor influencing machine design, selection of materials based on mechanical properties - Direct, Bending and torsion stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - Design of curved beams - crane hook and 'C' frame Factor of safety - theories of failure - stress concentration - fatigue strength and the S-N diagram -Soderberg, Goodman and Gerber relations

UNIT II DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength, rigidity and critical speed - Design of keys and key ways - Design of rigid and flexible couplings - Introduction to gear and shock absorbing couplings - design of knuckle joints.

UNIT III DESIGN OF FASTENERS AND WELDED JOINTS

Threaded fasteners - Design of bolted joints including eccentric loading - Design of welded joints for pressure vessels and structures - theory of bonded joints.

UNIT IV DESIGN OF SPRINGS AND LEVERS

Design of helical, leaf, disc and torsion springs under constant loads and varying loads - Concentric torsion springs - Belleville springs - Design of Levers.

UNIT V DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings - sliding contact and rolling contact types. - Cubic mean load - Design of journal bearings - McKee's equation - Lubrication in journal bearings - calculation of bearing dimensions Design of flywheels involving stresses in rim and arm.

TOTAL: 60

Note: (Use of Design Data Book is permitted in the University examination)

TEXT BOOKS

REFERENCES
GOAL:
To make the students aware of the role of computer in the product Design & Development

OBJECTIVE:
The course should enable them to
1. Learn the fundamentals of computer graphics
2. Learn how product curvatures can be drawn using computer
3. Learn 3D modeling of the assembly of a components
4. Learn the standards used in computer graphics

OUTCOME:
The student should be able to
1. Design and draw a components and assembly drawings in use.
2. Be knowledgeable to use standards for computer graphics effectively.

UNIT I FUNDAMENTALS OF COMPUTER GRAPHICS 9
Product cycle-Desigencode sequential and concurrent engineering-Computer aided design
CAD System architecture-Computer graphics-co-ordinate systems-2D and 3D transformations
Homogeneous coordinates-Linedrawing-Clipping-viewing transformation

UNIT II GEOMETRIC MODELLING 9
Representation of curves-Hermite curve-Bezier curve-B-spline curves-rational curves
Techniques for surface modelling-surface patch-Coons and bicubic patches-Bezier and B-spline surfaces
Solid modeling techniques-CSG and B-rep

UNIT III VISUAL REALISM 9
Hidden-Line-Surface-Solid removal algorithms-shading-colouring-computer animation

UNIT IV ASSEMBLY OF PARTS 9
Assembly modelling-interference of positions and orientation-tolerance analysis-mass property calculations
Mechanism simulation and interference checking

UNIT V CAD STANDARDS 9
Standards for computer graphics-Graphical Kernel System (GKS) - standards for exchange images
Open Graphics Library (OpenGL)-Data exchange standards-IGES, STEP, CALS etc.-communication standards.
TOTAL: 45 PERIODS

TEXTBOOK:

REFERENCES:
1. Chris McMahon and Jimmie Browne “CAD/CAM Principles, Practice and Manufacturing Management” (Second edition) - Pearson Education

ME 2758 MODERN CONCEPTS OF ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

To expose the students the concepts of integrated design processes with practical approach and make them develop design processes with appreciation of economic and other factors.

OBJECTIVES

The course should enable the students to:

1. Provide an overview of the integrated design process with a practical bias.
2. Prepare the student to understand and develop design processes leading to a realizable product with an appreciation of the economics, environmental concerns, manufacturability and product lifecycle management.
3. Understand and develop a design process leading to a realizable product.

OUTCOME

The students should be able to:

1. Get an overview of the integrated design process with a practical bias.
2. Appreciate the economics, environmental concerns, manufacturability, and product lifecycle management.
3. Understand the concept of DFM and the principles of Prototyping.
UNITI PRODUCT DESIGN PROCESS 12

Importance of product design-process-Design considerations-Morphology of design-
Marketing-Organisation for design-Computer aided engineering-Codes and standards- Design
- review-Technological innovation and design process-Product and process cycle -Societal considerations InDesign.

UNITII PRODUCT PLANNING AND SPECIFICATION 10

Opportunities identification-Evaluation-Resource allocation-Pre-project planning-Customer need identification-Establishing target specification- Setting the final specification.

UNIT III CONCEPT GENERATION, SELECTION AND TESTING 10

Activity of concept generation-Clarification of problem-External and internal searches-Concept exploration-
Result analysis-Overview of selection methodologies- Concept screening- Concept scoring- Concept testing -
Choice of survey population-Survey formats-measurement of customer response- Interpretation and analysis of results.

UNITIV PRODUCT ARCHITECTURE, INDUSTRIAL DESIGN, DESIGN FOR MANUFACTURE AND PROTOTYPEING 13

Product architecture-Implications-establishment-platform planning-system level design - Need for industrial design and its impact-The industrial design process and its management-Assessment of quality-
Overview of design for manufacture process-Steps in DFM-Basics principles of prototyping
- Prototyping technologies-Planning for prototypes.

TOTAL : 45

TEXT BOOKS

REFERENCES

ME 2504 ENGINEERING MATERIALS & METALLURGY

L T P C
91
GOAL
To develop a basic understanding of the properties of materials and hence provide a sound rationale for selection and use of materials in engineering.

OBJECTIVES
The course should enable the students to

1. Impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials.
2. Identify and select suitable materials for various engineering applications.
3. Learn the physical origins of properties of materials and their control.
4. Understand the ways in which properties of materials govern their selection in engineering applications.
5. Show how non-metallic bonding leads to vary different properties (e.g. Ceramics and polymers)

OUTCOME
The students should be able to

1. Demonstrate how defects in atomic structure affect mechanical properties
2. Relate the kinetics of a number of apparently different materials processes to the same underlying process (diffusion)
3. Explain how strengthening mechanisms occur on the microstructural scale and how this is related to the bulk mechanical properties we require in engineering structures
4. Apply the use of phase diagrams to explain the development of microstructure and hence how alloys are designed
5. Analyze failure problems and apply the correct fracture mechanics approach

Review (Not for Exam):
Crystal structure - BCC, FCC and HCP structure - unit cell - crystallographic planes and directions, miller indices - crystal imperfections, point, line, planar and volume defects - Grain size, ASTM grain size number.

UNIT I CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS

UNIT II HEAT TREATMENT
Definition - Full annealing, stress relief, recrystallization and spheroid zing -normalizing, hardening and tempering of steel. Isothermal transformation diagrams - cooling curves superimposed on I.T. diagram CCR - Hardenability, Jominy end quench test - Au tempering, mar tempering - case hardening, carburising, nitriding, cyaniding, carbonitriding - Flame and Induction hardening.

UNIT III FERROUS AND NON FERROUS METALS
Effect of alloying additions on steel (Mn, Si, Cr, Mo, V Ti & W) - stainless and tool steels - HSLA managing steels - Gray, White malleable, spheroidal - Graphite - alloy cast irons.
Copper and Copper alloys - Brass, Bronze and Cupronickel - Aluminum and Al-Cu - precipitation strengthening treatment - Bearing alloys.

UNIT IV NON-METALLIC MATERIALS

Polymers - types of polymer, commodity and engineering polymers - Properties and applications of PE, PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE Polymers - Urea and Phenol Formaldehydes - Engineering Ceramics - Properties and applications of Al2O3, Sic, Si3, N4, PSZ and Sialon - Fibre and particulate reinforced composites.

UNIT V MECHANICAL PROPERTIES AND TESTING

Mechanism of plastic deformation, slip and twinning - Types of fracture - Testing of materials under tension, compression and shear loads - Hardness tests (Brinell, Vickers and Rockwell) Impact test Izod and charpy, fatigue and creep test.

TOTAL: 45

TEXT BOOK

REFERENCE

GOAL
To expose the students in Hydraulic and Pneumatic Power Systems, its various components and methods of designing.

OBJECTIVES
The course should enable the students to:

1. Know the advantages and applications of Fluid Power Engineering and Power Transmission Systems.
2. Learn the Applications of Fluid Power System in automation of Machine Tools and others equipment’s.

OUTCOME
The students should be able to:

2. Differentiate the merits between the Hydraulic and Pneumatic Power Systems.
3. Design the Fluid Power Systems applicable in automation of Machine Tools and others Equipment’s.

UNIT I FLUID POWER SYSTEMS AND FUNDAMENTALS

UNIT II HYDRAULIC SYSTEM & COMPONENTS

UNIT III DESIGN OF HYDRAULIC CIRCUITS

UNIT IV PNEUMATIC SYSTEMS AND COMPONENTS
Construction of Control Components
Pneumatic Components: Properties of air - Compressors - Filter, Regulator, and Lubricator Unit - Air control valves, Quick exhaust valves, and pneumatic actuators.

Fluid Power Circuit Design, Speed control circuits, synchronizing circuit, Pneumatic and Hydraulic circuit, Sequential circuit design for simple applications using cascade method.

UNIT V DESIGN OF PNEUMATIC CIRCUITS

Servo systems - Hydro Mechanical servo systems, Electro hydraulic servo systems and proportional valves. Fluidics - Introduction to fluidic devices, simple circuits, Introduction to Electro Hydraulic Pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits; failure and troubleshooting.

TOTAL: 45

TEXT BOOK

REFERENCES

GOAL
To impart knowledge on work study and ergonomics and cost estimation.

OBJECTIVES
The course should enable the students to:
1. Understand the process planning concepts
2. Prepare cost estimation for various products after process planning

OUTCOME
The students should be able to:
1. Understand the characteristics of different types of tools and techniques available and their applications.
2. Approach the process planning activities, selection of machine based on process requirement and develop the manufacturing logic.
3. Determine data required for Cost estimation and estimate the production cost for different jobs.

UNIT I WORK STUDY AND ERGONOMICS

UNIT II PROCESS PLANNING
Definition - Objective - Scope - approaches to process planning- Process planning activities - Finished part requirements- operating sequences- machine selection - material selection parameters- Set of documents for process planning- Developing manufacturing logic and knowledge- production time calculation - selection of cost optimal processes.

UNIT III INTRODUCTION TO COST ESTIMATION
Objective of cost estimation- costing - cost accounting- classification of cost- Elements of cost.

UNIT IV COST ESTIMATION
Types of estimates - methods of estimates - data requirements and sources- collection of cost-allowances in estimation.

UNIT V PRODUCTION COST ESTIMATION
Estimation of material cost, labour cost and over heads, allocation of overheads - Estimation for different types of jobs.

TOTAL : 45
TEXT BOOK

REFERENCES

ME 2531 DYNAMICS LAB

GOAL
To expose the students about the static and dynamic behavior of the machines

OBJECTIVES
The course should enable the students to:

1. Use of various measurement methods
2. Verify the laws governing the dynamics of machines
3. Do the case studies on the field of Vibration

OUTCOME
The students should be able to:

1. Develop the concept of various measurement methods
2. Know about the laws governing the dynamics of machines such as Balancing of Rotating and Reciprocating Mass, Jump phenomenon in Cams, Sensitivity effort in Governors Etc.,
3. Know about different types of vibrations and its applications.

LIST OF EXPERIMENTS
1. Governors - Determination of sensitivity, effort, etc. for Watt, Porter, Proell, Hartnell governors
2. Cam - Study of jump phenomenon and drawing profile of the cam.
5. Balancing of reciprocating masses.

97
8. Vibrating system - spring mass system - Determination of damping coefficient of single degree of freedom system.
9. Determination of influence coefficient for multidegree freedom suspension system.
10. Determination of transmissibility ratio - vibrating table.
11. Determination of torsional frequencies for compound pendulum and flywheel system with jumped Moment of inertia.
12. Transverse vibration - free - Beam. Determination of natural frequency and deflection of beam

LIST OF EQUIPMENTS (for a batch of 30 students)

1. Cam analyzer.
5. Dynamic balancing machine.
6. Static and dynamic balancing machine.
7. Vibrating table
8. Vibration test facilities apparatus

TOTAL: 45
GOAL:
To expose the students to the various Non-Destructive Testing Methods

OBJECTIVE:
Students should be able to
1. Understand the various NDT techniques and apply them

OUTCOME:
By doing experiments in the laboratory, the student should be able to apply them in Industry without difficulty.

LISTOFEXPERIMENTS
1. Specimen preparation for ferrous alloys
2. Microstructural examination of ferrous alloys
3. Specimen preparation for non-ferrous alloys
4. Microstructural examination of non-ferrous alloys
5. Magnetic particle inspection test
6. Liquid penetrant test
7. Fluorescent particle in section test.
8. Ultrasonic flaw detection.

LISTOFEQUIPMENTS
1. Specimen polishing machine with different grade of abrasive sheet, etchant for ferrous and nonferrous material.
2. Metallurgical microscope with imaging facilities.
3. Ultrasonic flaw detection machine.
4. Liquid penetration test dye, dryer and cleaner equipment.
5. Magnetic particle testing machine.
6. Eddy current testing machine.

TOTAL: 30 PERIODS
GOAL
To expose the students in CNC manual part programming and computer assisted part of programming

OBJECTIVES
The course should enable the students to:

1. Learn the Manual part programming for CNC Lathe & Milling
2. Learn the computer assisted part programming

OUTCOME
The students should be able to:

1. Write the programming for Broaching
2. Design cam software for development CNC code generation

LIST OF EXPERIMENTS

A) COMPUTER AIDED MANUFACTURING (CAM) 36

1. MANUAL PART PROGRAMMING (Using G and M Codes) in CNC lathe
 1.1 Part programming for Linear and Circular interpolation, Chamfering and Grooving
 1.2 Part programming using standard canned cycles for Turning, Facing, Taper turning and Thread cutting

2. MANUAL PART PROGRAMMING (using G and M codes) in CNC milling
 2.1 Part programming for Linear and Circular interpolation and Contour motions.
 2.2 Part programming involving canned cycles for Drilling, Peck drilling, and Boring.

B) SIMULATION AND NC CODE GENERATION 9

NC code generation using CAD / CAM software - Post processing for standard CNC Controls like FANUC, Hiedenhain etc.

TOTAL: 45

LIST OF EQUIPMENT FOR CAM LAB (for a batch of 30 students)

I. HARDWARES

1. Computer server - 1 No.
2. Computer nodes or systems (Pentium IV with 256MB Ram) networked to the server - 30 Nos.
3. A 3 size plotter - 2 Nos.
4. Laser Printer - 2 Nos.
5. Trainer CNC lathe - 2 Nos.

II. SOFTWARES

1. CAD/CAM Software - 15 licenses
 (Pro-E or IDEAS or Unigraphics or CATIA)

2. CAM Software - 15 licenses
 (CNC programming and tool path simulation for FANUC, Numeric and Heiden controller)
SEMESTER - VI

MG 2001 PRINCIPLES OF MANAGEMENT
(Common to Auto, Aero and Mech)

GOAL
To expose the students in management concepts list planning, organizing, staffing, leading and controlling.

OBJECTIVES
The course should enable the students to:
1. Gain Knowledge on the concepts of management is essential at all levels in all types of organizations.
2. Have a clear understanding of the managerial functions like planning, organizing, staffing, leading and controlling.
3. Students will also gain some basic knowledge on the various functional specialization of management.

OUTCOME
The students should be able to:
1. Understand the organization structure of the industry;
2. Understand the need of Planning;
3. Understand the function of production planning and control, PERT/CPM, Quality Control
4. Understand the human behavior in varying Environments.
5. Understand how to manage conflicts in workplace Environment.
6. Understand the Human resource and marketing management.

UNIT I HISTORICAL DEVELOPMENT 9
Definition of Management - Science or Art - Management and Administration - Development of Management Thought - Contribution of Taylor and Fayol - Functions of Management - Types of Business Organization.

UNIT II PLANNING 9

UNIT III ORGANISING 9

UNIT IV DIRECTING 9
UNIT V CONTROLLING

System and process of Controlling - Requirements for effective control - The Budget as Control Technique - Information Technology in Controlling - Use of computers in handling the information Productivity - Problems and Management - Control of Overall Performance - Direct and Preventive Control - Reporting - The Global Environment - Globalization and Liberalization - International Management and Global theory of Management.

TOTAL: 45

TEXT BOOKS

REFERENCES

GOAL
To create an awareness of environment degradation and its protection.

OBJECTIVES
The course should enable the students to:

1. Learn the various environmental pollution aspects and issues.
2. Understand the comprehensive insight into natural resources, ecosystem and biodiversity.
3. Know the ways and means to protect the environment from various types of pollution.

OUTCOME
The students should be able to:

1. Know the various natural resources available.
2. Know the effect of various Human activities affecting our Natural resources.
3. Understand the various Environmental Pollution aspects and Issues involved.
4. Appreciate the need of Sustainable Development.

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL RESOURCES

Definition, scope and importance - need for public awareness - forest resources: use and overexploitation, deforestation, case studies. Timber extraction, mining, dams and their ground water, floods, drought, conflicts over water, dams-benefits and problems - mineral resources: use effects on forests and tribal people - water resources: use and over-utilization of surface and exploitation, environmental effects of extracting and using mineral resources, case studies - food resources: world food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer pesticide problems, water logging, salinity, case studies - energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies - land resources: land as a resource, land degradation, man induced landslides, soil erosion and desertification - role of an individual in conservation of natural resources - equitable use of resources for sustainable lifestyles.

Field study of local area to document environmental assets - river / forest / grassland / hill / mountain.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem - structure and function of an ecosystem - producers, consumers and decomposers - energy flow in the ecosystem - ecological succession - food chains, food webs and ecological pyramids - introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - introduction to biodiversity - definition: genetic, species and ecosystem diversity - biogeographically classification of India - value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values - biodiversity at global, national and local levels - India as a mega-diversity nation - hot-spots of biodiversity - threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

Field study of common plants, insects, birds
Field study of simple ecosystems - pond, river, and hill slopes, etc.

UNIT III ENVIRONMENTAL POLLUTION

Definition - causes, effects and control measures of: (a) air pollution (b) water pollution (c) soil pollution (d) marine pollution (e) noise pollution (f) thermal pollution (g) nuclear hazards - solid waste management: causes, effects and control measures of urban and industrial wastes - role of an individual in prevention of pollution - pollution case studies - disaster management: floods, earthquake, cyclone and landslides.

Field study of local polluted site - urban / rural / industrial / agricultural

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development - urban problems related to energy - water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns, case studies - environmental ethics: issues and possible solutions - climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies wasteland reclamation - consumerism and waste products - environment protection act - air (prevention and control of pollution) act - water (prevention and control of pollution) act - wildlife protection act forest conservation act - issues involved in enforcement of environmental legislation - public awareness.
UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45

TEXT BOOKS

REFERENCES
1. Bharucha reach, The Biodiversity of India, main publishing Pvt. Ltd., Ahmedabad India,
GOAL:
To expose the student to various deformation processes in Metal Industries and also to a new form of manufacturing process which is much cheaper and at the same time better than conventional manufacturing process.

OBJECTIVE:
The course should enable the students to
1. Understand the principles of various deformation processes equipment’s used, applications, limitations and economics.
2. Get an inside into the principles of manufacturing components through powder metallurgy route.

OUTCOME:
Students should be able to:
1. Employ the knowledge thus gained in the manufacture of components through the various manufacturing processes including powder Metallurgy and to be cost effective.

UNIT I INTRODUCTION TO METAL FORMING 8
Mechanical behavior of materials—Elastic and plastic deformation—Classification of Forming Processes—Temperature in metal working: hot and cold working—Introduction to the theory of plastic deformation.

UNIT II THEORY AND PRACTICE OF BULK FORMING PROCESSES 10
Analysis of plastic deformation in forging, rolling, extrusion, rod/wire and tube drawing processes Effect of friction, calculation of forces, work done, process parameters, equipments, defects and applications—Recent advances in forging, rolling, extrusion and drawing processes—Experimental techniques of evaluation of friction in metal forming—Economics of bulk forming processes.

UNIT III SHEET METAL FORMING PROCESSES 10

UNIT IV SPECIAL FORMING PROCESSES 8

UNIT V POWDER METALLURGY 9
Overview of powder metallurgy techniques, advantages and their applications—Powder forging, rolling, extrusion and drawing—Secondary and finishing operations—Design considerations for powder metallurgy—Economics of powder metallurgy processes.
OKS:

REFERENCES:

ME 2765 COMPUTER INTEGRATED MANUFACTURING

L T P C
3 0 0 3

GOAL:
To impart knowledge on how computers are integrated at various levels of planning and manufacturing.

OBJECTIVES
The course should enable the students to:
Introduce the flexible manufacturing system and
Handle the product data and various software used for manufacturing
Understand Computer Aided Process Planning.

OUTCOME
The students should be able to:
Appreciate the changing manufacturing scene
Develop the role of CAD/CAM
Understand implementation ofCIM.
UNITI INTRODUCTION 8

The meaning and origin of CIM-the changing manufacturing and management scene-External communication-Islands of automation and software-Dedicated and open systems-Manufacturing automation protocol-Product related activities of accompany-Marketing engineering- Production planning-Plant operations- Physical distribution-Business and financial management.

UNITII GROUPTECHNOLOGYANDCOMPUTERAIDEDPROCESSPLANNING 10

UNITIII SHOPFLOORCONTROLANDINTRODUCTIONOFFMS 9

Shop floor control- phases- Factory data collection system-Automatic identification methods-Barcode technology- Automated data collection system. FMS- components of FMS-types-FMS workstation-
Material handling and storage systems- FMS layout- Computer control systems- Application and benefits.

UNITIV CIMIMPLEMENTATIONANDDATACOMMUNICATION 10

CIM and company strategy- System modeling tools- IDEF models-Activity cycle diagram-CIM open system architecture(CIMOSA)-Manufacturing enterprise wheel-CIM architecture-Product data management-CIM implementation software.

Communication fundamentals-Local area networks-Topology-LAN implementations-Network management and installations.

UNITV OPENSYSTEMANDDATABASEFORCIM 8

Open systems-Open systeminter connection-Manufacturing automation protocol and technical office protocol (MAP/TOP)-Development of data bases-Data base terminology-Architecture of data base systems-Data modeling and data associations-Relational databases- Data base operators- Advantages of data base and relational database.

TOTAL : 45

TEXT BOOK

REFERENCES

ME 2603 INDUSTRIAL AUTOMATION & ROBOTICS

L T P C
3 0 0 3

GOAL
To expose the students in basic concepts of robots, familiarize them with the various drive systems for robot, sensors and their applications in robots, programming of robots.

OBJECTIVES
The course should enable the students to:

1. Learn the basic concepts, parts of robots and types of robots
2. Understand the various drive systems for robot, sensors and their applications in robots, programming of robots
3. Learn the various applications of robots, justification, implementation and safety of robots.

OUTCOME
The students should be able to:

1. Understand the various drive systems for robot, sensors and their applications in robots, programming of robots
2. Have a knowledge in Image Processing
3. Having knowledge in usage of various Mechanisms in Robot applications.

UNIT I FUNDAMENTALS OF ROBOT

Robot - Definition - Robot Anatomy - Co-ordinate Systems, Work Envelope, types and classification - Specifications - Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load - Robot Parts and their Functions - Need for Robots - Different Applications

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Pneumatic Drives - Hydraulic Drives - Mechanical Drives - Electrical Drives - D.C. Servo Motors, Stepper Motor, A.C. Servo Motors - Salient Features, Applications and Comparison of all these Drives End Effectors - Grippers - Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations
UNIT III SENSORS AND MACHINE VISION

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Differences; Forward Kinematics and Reverse Kinematics of Manipulators with Two, Three Degrees of Freedom (In 2 Dimensional), Four Degrees of Freedom (In 3 Dimensional) - Deviations and Problems

Teach Pendant Programming, Lead through programming, Robot programming Languages - VAL Programming - Motion Commands, Sensor Commands, End effector commands, and Simple programs

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

RGV, AGV; Implementation of Robots in Industries - Various Steps; Safety Considerations for Robot Operations; Economic Analysis of Robots - Pay back Method, EUAC Method, Rate of Return Method.

TOTAL : 45

TEXT BOOK

REFERENCES

GOAL
The goal of the programme is to provide the learners with the methods and materials required for becoming accomplished personalities through the medium of English.

OBJECTIVES
The course is expected to enable students to:

1. Be aware of self-knowledge by exposure to soft skills, values, behaviour, attitudes, temperamental changes, and a positive attitude to life.
2. Learn personality traits and undergo personality tests to determine their own personality characteristics and the scope for improvement.
3. Cultivate the art of speaking fluently making use of proper gestures, tone and voice modulation, adding humour to the speech.
4. Figure out the need to work in teams, adorn or accept team leadership, and make use of body language to enhance team spirit.
5. Be familiar with the art of managing self, people, work and time, keeping in mind problems like time-wasters and stress-builders.

OUTCOME
On completion of the course, the students will be able to:

1. Apply the knowledge gained to improve upon their values, behaviour, attitude, and develop the soft skills required for home, workplace and the society.
2. Employ the concept of personality traits and build up an accomplished personality that would be pleasing to people around so as to influence them positively.
3. Develop a personal style and communicate fearlessly and effectively in a convincing manner so as to impress listeners or the audience.
4. Participate in presentations, group discussions, debates and mock interviews making good use of language skills and interpersonal relationships.
5. Comprehend stress-management tips to overcome stress-prone habits and develop a career plan with personal, familial and societal goals for success.

UNIT I
Values and attitudes - Value-formation - Values & education - Terminal & Instrumental values - Civic responsibilities - The power of Personal/ Cultural/ Social values -- Behaviour and attitudes -- Features of attitudes - Developing positive attitude - Overcoming negative attitude -- People skills - Soft skills as per the Work Force Profile - The four temperaments - Sanguine - Choleric - Melancholic - Phlegmatic -- Tests for Personal Chemistry.

UNIT II
What is personality development? - Types of personalities as per (i) Heredity (ii) Environment (iii) Situation - the 16 personality factors - MBTI Tests - Personality types - Increasing self awareness: Assessing one's locus...
of control, Machiavellianism, self-esteem, self-monitoring, risk-taking, Type A, Type B personality elements - Intellectual and physical abilities for jobs -- Personality tests.

UNIT III
12

UNIT IV
12
Team work - Team building - Team leadership -- How to face an interview? -- How to participate in a group discussion? - How to argue for or against in a debate? - Body language - non-verbal communication - personal appearance - facial expression - posture - gestures - eye contact - Etiquette - Voluntary and involuntary body language -Gender implications -- Tests.

UNIT V
12

REFERENCES

Study material will be prepared by the Department of Languages.
Tests suggested will be prepared by a senior faculty of the department.
Movies will be screened to discuss and debate on the topics introduced in each unit.
Laboratory Requirements:
1. Career Lab:1 room
2. 2 Computers as a Server for Labs (with High Configuration)
3. Headphones with Mic (i-ball) - 100 Nos
4. Speakers with Amplifiers, Wireless Mic and Collar Mic - 2 Sets
5. Teacher table, Teacher Chair - 1 + 1 6. Plastic Chairs - 75 Nos.
GOAL
To design and fabricate a device/machine/equipment and demonstrate its working

OBJECTIVES
The course should enable the students to:

1. Provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems.

OUTCOMES
The students should be able to:

1. Complete understanding of making a product is achieved
2. Knowledge on preparing a technical report is gained

NOTES

* The students in convenient groups of not more than 4 members have to take one small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution.

* The item chosen may be small machine elements (Example-screw jack, coupling, machine vice, cam and follower, governor etc), attachment to machine tools, tooling (jigs, fixtures etc), small gear box, automotive appliances, agricultural implements, simple heat exchangers, small pumps, hydraulic/pneumatic devices etc.

* The students are required to design and fabricate the chosen item and demonstrate its working apart from submitting the project report. The report should contain assembly drawing, parts drawings, process charts relating to fabrication.
SEMESTER VII

MG 2002 TOTAL QUALITY MANAGEMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To understand the evaluation of quality concepts and various aspects related to Quality and to implement Total Quality Management practices in an organization improvement.

OBJECTIVES
The course will enable the students:

(i) To understand the Total Quality Management concepts and principles and the various tools available to achieve Total Quality Management in an organizational setting

(ii) Explain the importance of Statistical Process Control (SPC), methods in testing and measuring quality acceptance, quality standards for product and services in an organization using seven management tools.

(iii) To explain the statistical approach for quality control.

(iv) To create an awareness about the ISO and QS certification process and its need in an organization.

OUTCOME
After completion of the course the learner will be able to:

(i) Appreciate quality and understands various dimensions of quality, aspects that are related to quality cost, and methods to implement quality in an organization.

(ii) Have a clear understanding of customer perception and the need for ensuring quality of products or services and ways to attain customer satisfaction.

(iii) Explain the importance of Statistical Process Control (SPC), methods in testing and measuring quality acceptance, quality standards for product and services in an organization using seven management tools.

(iv) Clearly understand the various ISO standards and procedures involved in assuring and ensuring quality.

UNIT I INTRODUCTION
Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership - Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

UNIT II TQM PRINCIPLES
UNIT III STATISTICAL PROCESS CONTROL (SPC) 9
The seven tools of quality, Statistical Fundamentals - Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

UNIT IV TQM TOOLS 9

UNIT V QUALITY SYSTEMS 9

TOTAL : 45

TEXT BOOK

REFERENCES

ME 2701 FINITE ELEMENT METHODS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

GOAL
To train the students in the principles involved in discretisation and finite element approach.

OBJECTIVES
The course should enable the students to:
1. Learn the principles involved in discretization and finite element approach
2. Form stiffness matrices and force vectors for simple elements
3. Find the various approach followed in Finite Element approach.
4. Use the various elements for discretisation.
5. Learn about shape functions.

OUTCOME

The students should be able to:

1. Know about discretion techniques, matrix algebra.
2. Learn about the Classical techniques in Finite Element Method.
3. Learn about various elements and when to choose them.
4. Form the stiffness matrix and solve them.
5. Do stress calculation for the components used in the Industries using the software.

UNIT I INTRODUCTION

Historical background - Matrix approach - Application to the continuum - Discretisation - Matrix algebra - Gaussian elimination - Governing equations for continuum - Classical Techniques in FEM Weighted residual method - Ritz method

UNIT II ONE DIMENSIONAL PROBLEMS

Finite element modeling - Coordinates and shape functions- Potential energy approach - Galarkin approach - Assembly of stiffness matrix and load vector - Finite element equations - Quadratic shape functions - Applications to plane trusses

UNIT III TWO DIMENSIONAL CONTINUUM

UNIT IV AXISYMMETRIC CONTINUUM

Axisymmetric formulation - Element stiffness matrix and force vector - Galarkin approach - Body forces and temperature effects - Stress calculations - Boundary conditions - Applications to cylinders under internal or external pressures - Rotating discs

UNIT V ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL CONTINUUM

The four node quadrilateral - Shape functions - Element stiffness matrix and force vector - Numerical integration - Stiffness integration - Stress calculations - Four node quadrilateral for axisymmetric problems.

TOTAL : 60

TEXT BOOKS

REFERENCES

ME 2702 MECHATRONICS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To expose the students in the interdisciplinary applications of Electronics, Electrical, Mechanical and Computer Systems for the Control of Mechanical and Electronic Systems.

OBJECTIVES
The course should enable the students to:
1. Understand the usage of Sensors and Transducers.
2. Understand the various systems involved in Mechatronics.
3. Learn the Various actuator systems and Understand System Models and their Controllers.
4. Know the Programming Logic Controller
5. Do Process in Designing the System.

Outcome
The students should be able to:
1. Select the proper Sensors.
2. Know the various Actuation Systems.
3. Design the Building blocks of Mechanical, Electrical, Fluid and Thermal Systems
4. Understand the concepts of Programmable Logic Controllers.
5. Design the Mechatronics Systems.

UNIT I MECHATRONICS, SENSORS AND TRANSDUCERS

UNIT II ACTUATION SYSTEMS

UNIT III SYSTEM MODELS AND CONTROLLERS

UNIT IV PROGRAMMING LOGIC CONTROLLERS

Programmable Logic Controllers - Basic Structure - Input / Output Processing - Programming Mnemonics - Timers, Internal relays and counters - Shift Registers - Master and Jump Controls Data Handling - Analog Input / Output - Selection of a PLC Problem.

UNIT V DESIGN OF MECHATRONICS SYSTEM

TEXT BOOK

REFERENCES

TOTAL: 45
GOAL:
To create awareness about optimization in utilization of resources.

OBJECTIVES

1. The course shoulder able the students to:

2. Understand and apply operations research techniques to industrial applications

3. Understand Linear Programming concepts

4. To understand sequencing and game theory

5. Understand the concepts of PERT/CPM

OUTCOME
The students should be able to:

1. Understand the characteristics of different types of decision making environmental and appropriate decision making approaches and tools to be used in each type.

2. Build and solve Transportation models and assignment models.

3. Design simple models like CPM and PERT to improved decision making

4. Develop critical thinking and objective analysis decision making.

UNIT I LINEAR PROGRAMMING PROBLEM
Formulation - Graphical Solution - Bounded and Unbounded Solutions - Simplex Method - Big M method-Duality-Two phase Method-Dual Simplex method.

UNIT II SEQUENCING AND GAME THEORY
Johnson's Algorithm- Two Machine and three Machine problem- Game theory with saddle point and without saddle point-Dominance properties- Graphical Solutions. Dynamic Programming

UNIT III ASSIGNMENT AND TRANSPORTATION PROBLEM
UNIT IV PERT - CPM - DECISION THEORY

Network diagram- Representation – Labeling - CPM - PERT probabilities of CPM - PERT probabilities of project duration - Laplace mini max, max mini Hurwitz criterion.

UNITY DETERMINATION OF EOQ

Purchase Model with and without Shortages - Manufacturing Model with and without shortages - Probabilistic Model.

TOTAL : 45

TEXTBOOKS
1. H.A.Taha, Operations Research-An Introduction, Prentice Hall of India./Pears on Education
2. J.K.Sharma, Operations Research, Macmillan
3. Vijaykumar, Operations Research, Scitech

ME 2731 COMPUTER AIDED SIMULATION AND ANALYSIS LABORATORY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

GOAL

To make students understand and learn about the simulation and analysis software and the solving techniques of various engineering problems

OBJECTIVES

The course should enable the students to:

1. Learn ANSYS- Analysis Software
2. Solve techniques of various engineering problems

OUTCOME

The students should be able to:

1. Use the ANSYS software for solving various problems
2. Have a good grip on analysis of the models modelled in any of the modelling software.

LIST OF EXPERIMENTS

A. Simulation

1. Simulation of Air conditioning system with condenser temperature and evaporator temperatures as input to get COP using C / MAT Lab.
2. Simulation of Hydraulic / Pneumatic cylinder using C / MAT Lab.
3. Simulation of cam and follower mechanism using C / MAT Lab.
Analysis (Simple Treatment only)

1. Stress analysis of a plate with a circular hole.
2. Stress analysis of rectangular L bracket
3. Stress analysis of an axi-symmetric component
4. Stress analysis of beams (Cantilever, Simply supported, Fixed ends)
5. Mode frequency analysis of a 2D component
6. Mode frequency analysis of beams (Cantilever, Simply supported, Fixed ends)
7. Harmonic analysis of a 2D component
8. Thermal stress analysis of a 2D component
9. Conductive heat transfer analysis of a 2D component
10. Convective heat transfer analysis of a 2D component

TOTAL : 45

LIST OF EQUIPMENTS (for a batch of 30 students)

Computer System-30 Nos
17 " TEF Color Monitor
Intel Core i5 /i7 processor
500 GB HDD
1 GB Graphics accelerator
4 GB RAM
Color Desk Jet Printer-1 No
Software
ANSYS Version 7 or latest-licenses
C / MATLAB-licenses
GOAL
To expose the students in Fluid power circuits, PLC based Fluid Power Control, Actuators, controllers and Virtual Instrumentation.

OBJECTIVES
The course should enable the students to:
1. Learn the theory behind the fluid power control.
2. Understand the details and theory behind Actuators and Sensors.
3. Learn the Details and theory behind controllers and Data logging systems.
4. Do Case study - Understanding about Robots and Programming.

OUTCOME
The students should be able to:
1. Understand the concept of interfacing the various mechanical, electrical, electronics and computer systems.
2. Know about the details of hydraulic and pneumatic Systems.
3. Design the circuits for hydraulic and pneumatic systems with PLC control.
4. Know about the various mechatronics elements through case studies.

LIST OF EXPERIMENTS
1. Design and testing of fluid power circuits to control
 (i) velocity (ii) direction and (iii) force of single and double acting actuators
2. Design of circuits with logic sequence using Electro pneumatic trainer kits.
3. Simulation of basic Hydraulic, Pneumatic and Electric circuits using software.
4. Circuits with multiple cylinder sequences in Electro pneumatic using PLC.
5. Servo controller interfacing for open loop & closed loop.
6. Robot programing.
7. PID controller interfacing
8. Stepper motor interfacing with 8051 Micro controller
 (ii) full step resolution (ii) half step resolution
9. Modeling and analysis of basic electrical, hydraulic and pneumatic & Electro hydraulic systems using LAB VIEW
10. Computerized data logging system with control for process variables like pressure flow and temperature.
LIST OF EQUIPMENTS (for a batch of 30 students)

1. Basic Pneumatic Trainer Kit with manual and electrical controls - 1 eah
2. Basic Pneumatic Trainer Kit with PLC control - 1 no
3. HYDROSIM & PNEUMOSIM Software / Automation studio - 10 sets
4. 8051 - Microcontroller kit with stepper motor and drive circuit LABVIEW software - 2 sets
5. LAB VIEW software with Sensors to measure Pressure, Flow rate, direction, speed, velocity and force. - 2 sets
6. Robot programming - 1 sets
7. Hydraulic kit with PLC Control - 1 sets

ME 2733 DESIGN PROJECT - II AND COMPREHENSIVE VIVA-VOCE

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

GOAL
To make the students innovative and skilled in design and fabrication work, also to improve the conceptual knowledge of the students.

OBJECTIVES
The course should enable the students to:

1. Provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems.
2. Make the students come up with new ideas in their area of interest.
3. Create interest in engineering by making them to fabricate the concept of their imagination.
4. Learn the concepts more in depth by providing guidance.
5. Enhance the knowledge and understanding of the subjects thoroughly.
6. Analyse with reasoning the various concepts involved in mechanical engineering.

OUTCOME
The students should be able to:

1. Do experiment with his ideas.
2. Troubleshoot practical problems.
3. Understand the latest trends in fabrication
4. Relate their ideas with industrial applications
5. Have adequate knowledge and conceptual skills
6. Have confidence in facing interviews and written exams
7. Qualify in competitive exams
NOTE

1. The students in convenient groups of not more than 4 members have to take one small item for design and fabrication. Every project work shall have a guide who is the member of the faculty of the institution.

2. Students will be exposed to lecture modules on Project and Thesis work followed by assignment of individual projects involving manufacturing/production/design of an engineering product. An Industrial project may also be undertaken by the student to be supervised jointly by Industry personnel and the teacher.

3. A student will have to appear for a Comprehensive Viva-Voce examination covering all the subjects before a board of examiners including an external expert.
GOAL
To develop the student's Skills and make Innovation in design and fabrication work from the theoretical and practical skill acquired from the previous semesters.

OBJECTIVES
The course should enable the students to:
1. Learn the objective of this project is to provide opportunity for the students to implement their skills acquired in the previous semesters to practical problems.
2. Make the students come up with new ideas in his area of interest.
3. Learn the concepts more in depth by providing guidance.

OUTCOME
The students should be able to:
1. Get an idea and confidence in designing, analysing and executing the project.
2. Develop knowledge of latest trends in fabrication has developed and Relate their ideas with industrial applications
3. Have complete understanding of making a product.

NOTE:
The objective of the project work is to enable the students in convenient groups of not more than 4 members on a project involving theoretical and experimental studies related to the branch of study. Every project work shall have a guide who is the member of the faculty of the institution. Six periods per week shall be allotted in the time table and this time shall be utilized by the students to receive the directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars on the progress made in the project.

Each student will be assigned any one of the following types of project/thesis work:
(a) Industrial case study
(b) Preparation of a feasibility report (c)Thesis by experimental research, and
(d) Design and development of equipment.

Each report must contain student's own analysis or design presented in the approved format.

Sessional marks will include
(a) Evaluation of the student's progress, (b) Degree of involvement and participation, (c) Merit of the project. A student will have to defend his project/thesis and credit will be given on the merit of viva-voce examination.
GOAL
To expose the various techniques involved in Marketing Management

OBJECTIVES
The course should enable the students to:

1. Understand the various processes involved in Marketing and its Philosophy.
2. Learn the Psychology of consumers.
3. Formulate Strategies for Advertising, Pricing and Selling.

OUTCOME
The students should be able to:

1. Know about the Marketing Dynamics
2. Know about the Consumer behavior.
3. Know about the Pricing strategy.
4. Know about role of Advertising

UNIT I MARKETING PROCESS
Definition, Marketing process, dynamics, needs, wants and demands, marketing concepts, environment, mix, types. Philosophies, selling versus marketing, organizations, industrial versus consumer marketing, consumer goods, industrial goods, product hierarchy

UNIT II BUYING BEHAVIOUR AND MARKET SEGMENTATION
Cultural, demographic factors, motives, types, buying decisions, segmentation factors - demographic - Psychographic and geographic segmentation, process, patterns.

UNIT III PRODUCT PRICING AND MARKETING RESEARCH
Objectives, pricing, decisions and pricing methods, pricing management. Introduction, uses, process of marketing research.

UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION
Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis, BCG, GEC grids.

UNIT V ADVERTISING, SALES PROMOTION AND DISTRIBUTION
Characteristics, impact, goals, types, and sales promotions- point of purchase- unique selling proposition. Characteristics, wholesaling, retailing, channel design, logistics, and modern trends in retailing.

TOTAL : 45
TEXT BOOKS

REFERENCES
5. Steven J.Skinner, Marketing, All India Publishers and Distributes Ltd. 1998.

ME 2751 UNCONVENTIONAL MACHINING PROCESSES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To expose the student in various unconventional machining processes

OBJECTIVES
The course should enable the students to:

1. Learn the course will impart a good perspective with adequate depth to understand the unconventional machining processes
2. Learn relative advantages over conventional machining techniques.

OUTCOME
The students should be able to:

1. Know about the working principle of various Unconventional Machining Processes.
2. Understand the relative advantages over conventional techniques and their applications.

UNIT I INTRODUCTION
Unconventional machining Process - Need - clarification - Brief overview of all techniques.

UNIT II MECHANICAL ENERGY BASED PROCESSES
UNIT III ELECTRICAL ENERGY BASED PROCESSES

UNIT IV CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical Machining and Electro-Chemical Machining (CHM and ECM)-Etchants- mask ant techniques of applying mask ants-Process Parameters - MRR- Applications Principles of ECM-equipment’s MRR-Electrical circuit-Process Parameters-ECG and ECH Applications.

UNIT V THERMAL ENERGY BASED PROCESSES

Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam Machining (EBM). Principles – Equipment -Types - Beam control techniques - Applications.

TOTAL : 45

TEXT BOOK

REFERENCES

ME 2871 NANO COATING

L T P C
3 0 0 3

GOAL :

To expose the students who an Emeagy field of science and Technology namly Nano Coatings.

OBJECTIVES:

- To understand the basics of Nano structured coatings.
- To understand about different coating methods and characterization of nano coatings.
- To understand the properties change due to coatings and also the applications.

OUTCOMES:

After studing this course, the students would have understood

1. What is Nano coating and Materials
2. Various Method employed in Nano coating of Materials
3. Production of Thin films and its applications.
UNITI INTRODUCTION TO NANOSTRUCTURED COATING
Introduction of Nano technology – Production of Nanoparticles – Applications of Nano particles
- Thin Films – Significance of Thin Films – Production of Thin Films – Applications of Thin films
- Coating and Surface Engineering – Coating Issues and Applications

UNITII NANO STRUCTURED COATINGS

UNITIII CHARACTERISATION OF NANOCOATINGS
Thermo dynamics of Nano structured Materials – Interfaces Thermo dynamics - Interface Traction-Interface Stresses – Chemical Equilibrium in Curved Interface-Influential Interface- Phase Interface-

UNITIV PROPERTIES OF NANOSTRUCTURED COATINGS
Mechanical Properties – Effects of Participation of Nano particles in Nano coating –Size Effect
- Effective Factors on Simultaneous Deposition – Effect of Density-Effect of Current Density

UNITV APPLICATIONS OF NANOCOATINGS
- Surface Improvement for Making Fog and Vapor Resistant Layers - Self-Cleaning Glasses- Medical and Hygienic Applications – Food Packaging – Electrical and Electronic Applications Lubricating Applications – Automobile industries –Defense applications.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCE:
GOAL:
To familiarize the students in the Art and Science of Precision Engineering.

OBJECTIVES:
1. To provide and enhance the technical knowledge in precision engineering, its components and applications.

OUTCOME:
After studying this course, the students would have learnt
1. The meaning and importance of precision machining and the importance of it.
2. The requirements of machine network elements to achieve precision in the components
3. The principles of various precision engineering Processes and apply them in actual field.

UNIT I PRECISION ENGINEERING

UNIT II PRECISION MACHINE ELEMENT

UNIT III ERROR CONTROL

UNIT IV PRECISION MANUFACTURING

UNIT V MEMS
Introduction – MEMS –characteristics- principle – Design – Application: automobile, defence, health care, Industrial, aerospace etc.,

TOTAL : 45 PERIODS
TEXT BOOKS:

REFERENCE BOOKS:
2. Institute of Physics Publishing, Bristol and Philadelphia, Bristol, BSI 6BE U.K.

ME 2754 MECHANICAL VIBRATION

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To expose the students to understand the sources of the vibration in automobile and other machinery and study the various methods to reduce the noise and vibration.

OBJECTIVES
The course should enable the students to:
1. Understand the sources of vibration and noise in automobiles and make design modifications
2. Learn to reduce the vibration and noise and improve the life of the components

OUTCOME
The students should be able to:
1. Translate a physical problem in mechanical vibration to an appropriate mathematical model.
2. Make engineering judgment on the problem of reducing vibration when required and the role of vibration in the design of mechanical equipment.

UNIT I BASICS OF VIBRATION
Introduction, classification of vibration: Free and forced vibration, Undamped and damped vibration and linear and non linear vibration, Response of damped and undamped systems Under harmonic force, analysis of single degree and two degree of freedom systems, Torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE
Introduction, Amplitude, Frequency, Wavelength sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, Measurement environment, Equipment, Frequency analysis Tracking analysis Sound quality analysis.
UNIT III AUTOMOTIVE NOISE SOURCES

UNIT IV CONTROL TECHNIQUES

Vibration isolation, Tuned absorbers, Untuned viscous dampers, Damping treatments, Application dynamic forces generated by IC engines, engine isolation, Crank shaft damping, Modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

Methods for control of engine noise Combustion noise Mechanical noise Predictive analysis, palliative treatments and enclosures Automotive noise control principles Sound in enclosures, Sound energy absorption Sound transmission through barriers.

TOTAL: 45

TEXT BOOKS

REFERENCES

GOAL
To expose the students to the concepts of quality, standards followed, sampling techniques to improve reliability.

OBJECTIVES
The course should enable the students to:

1. Introduce the concept of SQC
2. Understand process control and acceptance sampling procedure and their application.
3. Learn the concept of reliability.

OUTCOME
The students should be able to:

1. Understand the attributes in process control.
2. Appreciate the role of sampling procedure.
3. Understand the system reliability.

UNIT I INTRODUCTION AND PROCESS CONTROL FOR VARIABLES 10
Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality cost-Variation in process- factors - process capability- process capability studies and simple problems - Theory of control chart- uses of control chart -Control chart for variables - X chart, R chart and ? chart.

UNIT II PROCESS CONTROL FOR ATTRIBUTES 8
Control chart for attributes -control chart for proportion or fraction defectives - p chart and np chart control chart for defects - C and U charts, State of control and process out of control identification in charts.

UNIT III ACCEPTANCE SAMPLING 9
Lot by lot sampling - types - probability of acceptance in single, double, multiple sampling techniques - O.C. curves - producer's Risk and Consumer's Risk. AQL, LTPD, AOQL concepts- standard sampling plans for AQL and LTPD- uses of standard sampling plans.

UNIT IV LIFE TESTING - RELIABILITY 9
Life testing - Objective - failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate, system reliability, series, parallel and mixed configuration - simple problems. Maintainability and availability - simple problems. Acceptance sampling based on reliability test - O.C Curves.
UNIT V QUALITY AND RELIABILITY

9

Reliability improvements - techniques-use of Pareto analysis - design for reliability - redundancy unit and
standby redundancy - Optimization in reliability - Product design - Product analysis - Product development -
Product life cycles.

TOTAL : 45

TEXT BOOKS

REFERENCES

ME 2756 DESIGN OF JIGS FIXTURES& PRESS TOOLS

L T P C
3 0 0 3

GOAL

To expose the students to understand the design principles of work holding and guiding devices.

OBJECTIVES

The course should enable the students to:

1. Understand the principles, functions and design practices of Jigs, Fixtures and dies for press working
2. Understand the Principles of locating principles, locating elements and clamping Devices.

OUTCOME

The students should be able to:

1. Develop the jigs and fixture design
2. Appreciate the Design considerations in forging, extrusion, casting and plastic dies

UNIT IPURPOSE TYPES AND FUNCTIONS OF JIGS AND FIXTURES

8

Tool design objectives - Production devices - Inspection devices - Materials used in Jigs and Fixtures - Types
of Jigs - Types of Fixtures-Mechanical actuation-pneumatic and hydraulic actuation-Analysis of clamping
force-Tolerance and error analysis.

134
UNIT II JIGS
Drill bushes - different types of jigs-plate latch, channel, box, post, angle plate, angular post, turnover, pot jigs-Automatic drill jigs-Rack and pinion operated. Air operated Jigs components. Design and development of Jigs for given components.

UNIT III FIXTURES
General principles of boring, lathe, milling and broaching fixtures- grinding, planning and shaping fixtures, assembly, Inspection and welding fixtures- Modular fixtures. Design and development of fixtures for given component.

UNIT IV PRESS WORKING TERMINOLOGIES AND ELEMENTS OF DIES AND STRIP LAY OUT

UNIT V DESIGN AND DEVELOPMENT OF DIES
Design and development of progressive and compound dies for Blanking and piercing operations. Bending dies - development of bending dies-forming and drawing dies-Development of drawing dies. Design considerations in forging, extrusion, casting and plastic dies.

TOTAL: 45

TEXT BOOKS

REFERENCES
ME 2757 COMPUTATIONAL FLUID DYNAMICS

GOAL
To expose the students to numerical methods and to solve complex problems in fluid flow and heat transfer analysis using software.

OBJECTIVES
The course should enable the students to:

1. Introduce numerical modeling and its role in the field of heat transfer and fluid flow.
2. Enable the students to understand the various discretization methods and solving methodologies.
3. Create confidence to solve complex problems in the field of heat transfer and fluid dynamics by using high speed computers.
4. Understand the process of converting the PDE to difference equations using various discretization techniques.

OUTCOME
The students should be able to:

1. Know the equations governing fluid flow and heat transfer.
2. Appreciate the tools available for solving the algebraic equations.
3. Appreciate the problems associated with discretization of incompressible flow

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

UNIT II DISCRETISATION AND SOLUTION METHODOLOGIES

UNIT III HEAT CONDUCTION
Finite difference and finite volume formulation of steady/transient one-dimensional conduction equation, Source term linearization, Incorporating boundary conditions, Finite volume formulations for two and three dimensional conduction problems

UNIT IV CONVECTION AND DIFFUSION
Finite volume formulation of steady one-dimensional convection and Diffusion problems, Central, upwind, hybrid and power-law schemes - Discretisation equations for two dimensional convection and diffusion.
UNIT V CALCULATION OF FLOW FIELD

Representation of the pressure - Gradient term and continuity equation - Staggered grid - Momentum equations - Pressure and velocity corrections - Pressure - Correction equation, SIMPLE algorithm and its variants. Turbulence models: mixing length model, Two equation (k-?) models.

TOTAL : 45

TEXT BOOKS

REFERENCES

ME 2873 PROCESSING OF PLASTICS AND COMPOSITE MATERIALS

L T P C
3 0 0 3

GOAL:
To familiarize the students in the various processing techniques used in Plastics and composite Materials.

OBJECTIVE:
The purpose of this subject is to equip the students with the knowledge of processes utilized in developing materials or making components using plastic sand composite materials .This subject develops the competence of the students in major industrially practiced processing techniques.

OUTCOME :
After studying this course, the students will be able to,

1. Learn the various types of Plastics and Composite Materials available.
2. Learn the principles involved in the processing of the Plastics and various composite Materials

UNIT I INTRODUCTION TO PLASTICS AND COMPOSITE

UNITII PROCESSING OF PLASTICS

UNITIII PROCESSING OF POLYMER MATRIX COMPOSITES
Open Mould Processes, Bag Moulding, Compression Moulding with BMC and SMC - Filament winding-Pultrusion – Centrifugal Casting – Injection Moulding – Application of PMC’s.

UNITIV PROCESSING OF METAL MATRIX COMPOSITES

UNITV PROCESSING OF CERAMIC MATRIX COMPOSITES

TOTAL:45PERIODS

TEXTBOOKS:

ME 2874 THEORYOF METALCUTTING

L T P C
3 0 0 3

GOAL:
To familiarize the student with the theory of Matel cutting and expose him to the design of cutting tools and cutting tool Materials.

OBJECTIVES:
- To learn tool nomenclature, mechanical of metal cutting and forces in metal cutting.
- To know the thermal aspects in machining, tool materials, tool life and we AR mechanisms

OUTCOME:
After studying this course, the students will be able to learn
1. The specification of cutting tools
2. Design of cutting tools for pacific applications
3. The latest advancement in cutting tool manufacturing

UNIT I TOOLNOMENCLATURE 8
Single point tool – significance of the various angles provided and nose radius-American German CIRP and orthogonal system of tool nomenclature, nomenclature of drills, milling cutters and broaches – grinding wheels, Need for chip breakers.

UNIT II MECHANICS OF METAL CUTTING 10
Mechanisms of formation of chips – types of chips and the conditions conducive for the formation of each type built-up edge, its effects orthogonal Oblique cutting - Merchant’s circle diagram- Force and Velocity relationship, shear plane angle, Energy considerations in matching - Ernst Mechant’s theory of shear angle relationship-original assumption and modifications made.

UNIT III FORCES IN MACHINING 9
Forces in turning, drilling, milling and grinding, conventional Vsclimb milling - mean and maximum cross sectional areas of chipnilling – specific cutting pressure – specific horse power-requirements of tool dynamometers- construction and principle of operation of tool dyna mometers for turning, drilling and milling

UNIT IV THERMAL ASPECTS IN MACHINING 9
Sources of heat generation in machining – temperature measurement techniques in machining, Functions of cutting fluid – characteristics of cutting fluid - types, modes of applications, additives- application of cutting fluids- dry machining, Minimum Quantity Lubrication (MQL) machining.

UNIT V TOOL MATERIALS, TOOL WEAR AND TOOL LIFE 9

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:

ME 2760 COMPOSITE MATERIALS & STRUCTURES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To expose the students to various composites available and their manufacturing methods.

OBJECTIVES
The course should enable the students to:

1. Introduce different types of composite materials, their properties and applications.
2. Understand the advantages of Composite materials over conventional materials.

OUTCOME
The students should be able to:

1. Know about the properties, classification and applications of composites in the Industries.
2. Understand the Manufacture of composites.

UNIT I INTRODUCTION TO COMPOSITES
Fundamentals of composites - need for composites - Enhancement of properties - classification of composites - Matrix-Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) - Reinforcement - Particle reinforced composites, Fibre reinforced composites. Applications of various types of composites.

UNIT II POLYMER MATRIX COMPOSITES

UNIT III METAL MATRIX COMPOSITES
UNIT IV CERAMIC MATRIX COMPOSITES

UNIT V ADVANCES IN COMPOSITES

TOTAL : 45

TEXT BOOKS

REFERENCES

ME 2761 PROCESS PLANNING & CONTROL

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL

To impart knowledge on work study and ergonomics and cost estimation.

OBJECTIVES

The course should enable the students to:

3. Understand the process planning concepts
4. Prepare cost estimation for various products after process planning

OUTCOME

The students should be able to:

4. Understand the characteristics of different types of tools and techniques available and their applications.
5. Approach the process planning activities, selection of machine based on process requirement and develop the manufacturing logic.

6. Determine data required for Cost estimation and estimate the production cost for different jobs.

UNIT I WORK STUDY AND ERGONOMICS 10

UNIT II PROCESS PLANNING 10
Definition - Objective - Scope - approaches to process planning- Process planning activities - Finished part requirements- operating sequences- machine selection - material selection parameters- Set of documents for process planning- Developing manufacturing logic and knowledge- production time calculation - selection of cost optimal processes.

UNIT III INTRODUCTION TO COST ESTIMATION 7
Objective of cost estimation- costing - cost accounting- classification of cost- Elements of cost.

UNIT IV COST ESTIMATION 8
Types of estimates - methods of estimates - data requirements and sources- collection of cost-allowances in estimation.

UNIT V PRODUCTION COST ESTIMATION 10
Estimation of material cost, labour cost and over heads, allocation of overheads - Estimation for different types of jobs.

TOTAL : 45

TEXT BOOK

REFERENCES
GOAL
Establish the fundamental techniques for modeling dynamic systems.

Analyse and manipulate system models in the time and frequency domain.

Develop an understanding of feedback control systems and the parameters that influence their stability and performance.

OBJECTIVES
The course should enable the students to:

1. Learn Low order linear mathematical models of physical systems and their manipulation.
2. Know How negative feedback affects dynamic response and its characterization by primary analysis and performance measures.
3. Learn Fundamental mathematical tools used in system analysis and design.

OUTCOMES
The students should be able to:

1. Derive a model, making justifiable assumptions, from a description of a physical system and determine criteria for desired system performance and interpret trade-offs in different design configurations.
2. Analyze time and frequency domain response characteristics from plots, determine stability and predict responses for modified plots.
3. Apply standard design techniques to achieve satisfactory closed-loop performance.
4. Apply these skills in specific domains, e.g. Flight mechanics, vibrations and automotive systems.

UNIT I LINEAR SYSTEMS THEORY
Review of time domain analysis of linear systems dynamics - stability, performance measures and design process - state space and process models - example control systems.

System Representation in the s-domain: The Laplace transform and system transfer function - free/ forced behaviour and the characteristic equation - system poles and zeros, relative and absolute stability, root loci - steady-state error and the final value theorem.

UNIT II FREQUENCY RESPONSE OF LINEAR SYSTEMS
Sinusoidal excitation and Fourier Series - forecasting gain and phase, the frequency response function - graphical representation of frequency response, Bode plots.

UNIT III CLOSED-LOOP CONTROL SYSTEMS
Open/closed loop transfer function definitions - performance measures in control system design control system design examples - PID control system definitions and characteristics.
UNIT IV CONTROL SYSTEM STABILITY ANALYSIS

Stability in the s-domain, the Root locus method - stability in the frequency domain, Nyquist criterion - performance measures in the frequency domain - gain and phase margins, closed loop frequency response.

UNIT V DESIGN OF FEEDBACK CONTROL SYSTEMS

System compensation objectives and characteristics - lead-lag compensation, root locus and frequency response methods

TOTAL : 45

TEXT BOOK

REFERENCES

ME 2875 SYSTEM SIMULATION

L T P C

3 0 0 3

GOAL:
To expose the students to the Art and Science of System simulation Techniques.

OBJECTIVES:
1. To understand the importance and advantages of applying simulation techniques for solving various problems on discrete event systems.
2. To teach various random number generation techniques, its use in simulation, tests and validity of random numbers etc. Development of simulation models, verification, validation and analysis. Introduction to various simulation languages and comparison

OUTCOME:
After studying this course, the students will be able to understand
1. The principles and apply the simulation techniques either in product design or process design
2. How to optimize para meters using system simulation techniques.

UNIT I INTRODUCTION
History of simulation - Concept – simulation as a decision making tool-Advantages of simulation, Disadvantages, Applications - Monte Carlo simulation-Simulators.

UNIT II RANDOM NUMBERS/VARIATES

UNIT III DESIGN OF SIMULATION EXPERIMENTS
Problem formulation – data collection and reduction – logic developments – initial conditions
run length, tabular method of simulation – development of models using higher level languages for
systems like queuing, production, inventory and maintenance – output analysis and interpretation,
validation.

UNIT IV DISCRETE SYSTEM SIMULATION LANGUAGES 6
Need for simulation language – Comparison of simulation languages: SIMSCRIPT, GASP, SIMULA,
GPSS, PROMODEL, EXTEND, ARENA etc…

UNIT V QUEUING POLICIES, ALGORITHMS AND CASE STUDIES 10
Introduction to basic Single-pass heuristics, meta-heuristics and applications-Application of Genetic
algorithms and Ant colony based algorithms in Discrete event simulation models with simple examples.
Development of simulation models using the simulation language studies for systems for systems like,
queuing systems, production systems, inventory systems, maintenance and replacement systems,
investment analysis and network.

TOTAL: 45 PERIODS

REFERENCE BOOKS:

WEB REFERENCE BOOKS:

ME 2876 VALUE ENGINEERING AND REENGINEERING

GOAL:
To familiarize the students with the principles of Value Engineering and Re Engineering.

OBJECTIVES:
• To understand and analyze the theory and methodology of Value Engineering with the Guidelines,
Performa and Checklist for a systematic, step by step application of the technique to the current
industrial problems.
• To provide the knowledge about Reengineering Principles, the various models and
implementation method, which are adopted in the industry.

OUTCOME:
After studying this course, the students will be able to
1. Appreciate the importance of Value Engineering in Industries.
2. Implement Value Engineering and Re Engineering Techniques to Rehabilitate otherwise discarded
components to bring about coast saving.
UNIT I FUNDAMENTALS OF VALUE ENGINEERING
Value Types – How to add value job plan – Technique employed - Selection of project and team members – Value Engineering Job Plan – Benefits - Audit

UNIT II VALUE ENGINEERING AND JOB PLAN

UNIT III REENGINEERING PRINCIPLES

UNIT IV REENGINEERING PROCESS IMPROVEMENT MODELS

UNIT V IMPLEMENTATION OF REENGINEERING

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCE BOOK:
ME 2877 ADDITIVE MANUFACTURING TECHNOLOGY

GOAL:
The expose the students into one of the latest Manufacturing Technologies which has extensive usage in almost all fields.

OBJECTIVES:
• To know the principle methods, areas of usage, possibilities and limitations as well as environmental effects of the Additive Manufacturing technologies
• To be familiar with the characteristics of the different materials those are used in Additive Manufacturing.

OUTCOME:
After studying this course, the students will be able to

1. Apply the principles of this manufacturing process to produce the product.
2. Identify the characteristics of those materials and tools that can be used for this process.
3. Handle the softwares applicable to the product.
4. Identify areas of applications for this process.

UNIT I INTRODUCTION 10

UNIT II CAD & REVERSE ENGINEERING 10

UNIT III LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS 10

UNIT IV POWDER BASED ADDITIVE MANUFACTURING SYSTEMS 10

UNIT V MEDICAL AND BIO-ADDITIVE MANUFACTURING 5

TOTAL: 45 PERIODS
TEXT BOOKS:

REFERENCES:

ELECTIVE COURSE - VIII SEMESTER

GE 2001 PROFESSIONAL ETHICS & HUMAN VALUES

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To provide an appreciation of the responsibilities inherent in being a Professional Engineer.

OBJECTIVES
The course should enable the students to:
1. Create on Awareness on Engineering Ethics and Human Values
2. Appreciate the right of others

OUTCOME
The students should be able to:
1. Develop the ethical code of conduct for professional engineers - this will include personal values as well as national and international organisations / professional bodies.
2. Recognise, list and describe ethical issues and professional importance to the engineer.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS
UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as experimentation - engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three mile island and Chernobyl case studies.

UNIT V GLOBAL ISSUES

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors - moral leadership sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers (IETE), India, etc.

TOTAL : 45

TEXT BOOK

REFERENCES

2. Charles E Harris, Michael S. Protchard and Michael J Rabins, Engineering Ethics - Concepts and Cases, Wadsworth Thompson Learning, United States, 2000 (Indian Reprint now available)

MG 2003 ENTREPRENEURSHIP DEVELOPMENT

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL

Study of this subject provides an understanding of the scope of an entrepreneur, key areas of development, financial assistance by the institutions, methods of taxation and tax benefits, etc.

OBJECTIVES

The course should enable the students to:

1. Learn the Scope of an Entrepreneur
2. Understand the Major motives influencing an Entrepreneur.

OUTCOME
The students should be able to:

1. Know the Techno Economic Feasibility Assessment procedure.
2. Write a Project Proposal.
3. Know the various forms of Finance and support available.

UNIT I ENTREPRENEURSHIP
Entrepreneur - Types of Entrepreneurs - Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION
Major Motives Influencing an Entrepreneur - Achievement Motivation Training, self Rating, Business Game, Thematic Apperception Test - Stress management, Entrepreneurship Development Programs - Need, Objectives.

UNIT III BUSINESS
Small Enterprises - Definition, Classification - Characteristics, Ownership Structures - Project Formulation - Steps involved in setting up a Business - identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment - Preparation of Preliminary Project Reports - Project Appraisal - Sources of Information - Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

UNIT V SUPPORT TO ENTREPRENEURS
Sickness in small Business - Concept, Magnitude, causes and consequences, Corrective measures - Government Policy for Small Scale Enterprises - Growth Strategies in small industry - Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

TOTAL : 45

TEXT BOOKS

REFERENCES
GOAL
To expose the students to basic economics and cost analysis related to engineering industries.

OBJECTIVES
The course should enable the students to:

1. Learn about the basics of economics and cost analysis related to engineering so as to take economically sound decisions.
2. Understand the concept of depreciation and determination of economic life of asset.

OUTCOME
The students should be able to:

1. Understand the meaning of various terminologies like sinking fund factor, Present worth factor, capital recovery factor, Effective interest rate.
2. Appreciate the need of replacement and maintenance analysis.

UNIT I INTRODUCTION TO ECONOMICS

UNIT II VALUE ENGINEERING
Make or buy decision, Value engineering - Function, aims, Value engineering procedure. Interest formulae and their applications -Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor- equal payment series capital recovery factor-Uniform gradient series annual equivalent factor, Effective interest rate, Examples in all the methods.

UNIT III CASH FLOW
Methods of comparison of alternatives - present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.

UNIT IV REPLACEMENT AND MAINTENANCE ANALYSIS
Replacement and Maintenance analysis - Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset - capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.
UNIT V DEPRECIATION

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-
Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of
depreciation, service output method of depreciation-Evaluation of public alternatives- introduction,
Examples, Inflation adjusted decisions - procedure to adjust inflation, Examples on comparison of
alternatives and determination of economic life of asset.

TOTAL : 45

TEXT BOOK

REFERENCES

ME 2851 PRODUCTION PLANNING & CONTROL

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL

Learning about production types & work study, process planning & Scheduling Inventory control.

OBJECTIVES

The course should enable the students to:

1. Understand the various components and functions of production planning and control such as work
 study, product planning, process planning, production scheduling, Inventory Control.
2. Know the recent trends like Manufacturing Requirement Planning (MRP II) and Enterprise Resource
 Planning (ERP).

OUTCOME

The students should be able to:

1. Get an opportunities of recent trends like Manufacturing Requirement Planning (MRP II) and
 Enterprise Resource Planning (ERP).
2. Appreciate the need of the various activities of Production Planning and control such as work study,
 product planning, process planning, production scheduling, Inventory Control.
UNIT I INTRODUCTION

Objectives and benefits of planning and control-Functions of production control-Types of production job-batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect-aesthetic aspect. Profit consideration Standardization, Simplification & specialization-Break even analysis-Economics of a new design.

UNIT II WORK STUDY

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development Implementation - Micro motion and memo motion study - work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning-Steps in process planning-Quantity determination in batch production-Machine capacity, balancing-Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules- Gantt charts-Perceptual loading-Basic scheduling problems - Line of balance - Flow production scheduling Batch production scheduling-Product sequencing - Production Control systems- Periodic batch control Material requirement planning kanban -Dispatching-Progress reporting and expediting-Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system -Ordering cycle system-Determination of Economic order quantity and economic lot size-ABC analysis-Recorder procedure-Introduction to Computer Integrated Production Planning systems-elements of Just In Time Systems-Fundamentals of MRP II and ERP.

TOTAL : 45

TEXT BOOK

REFERENCES

1. Samson Eilon, Elements of production planning and control, Universal Book Corp.1984
GOAL:
To expose the students to the recent trends in manufacturing to improve productivity and customer satisfaction.

OBJECTIVES:
The course should enable the students to understand
1. The modern manufacturing systems
2. The concepts and applications of flexible manufacturing systems.

OUTCOME:
After studying this course, the students will be able to
1. Employ the concepts of flexible manufacturing systems in their industrial career
2. Use computers extensively for industrial applications

UNIT I PLANNING, SCHEDULING AND CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

UNIT II COMPUTER CONTROL AND SOFTWARE FOR FLEXIBLE MANUFACTURING SYSTEMS

UNIT III FMS SIMULATION AND DATA BASE

UNIT IV GROUP TECHNOLOGY AND JUSTIFICATION OF FMS

UNIT V APPLICATIONS OF FMS AND FACTORY OF THE FUTURE
TEXT BOOK:

REFERENCE BOOKS:

ME 2853 NEW PRODUCT DESIGN AND DEVELOPMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To expose the students the various aspects of design process, concepts to product costing, optimisation at the design and make form to apply in practical.

OBJECTIVES
The course should enable the students to:
1. Understand the several aspects of the design process and to apply them in practice.
2. Train the student in the concept of product costing and manufacturing economics in optimization of product design.

OUTCOME
The students should be able to:
1. Develop the concepts of product costing and other manufacturing economics in optimization of product design.
2. Know about the various tools available in the product design.
UNIT I PRODUCT DESIGN AND DEVELOPMENT
Principles of creativity in design - integrated product development and concurrent engineering - Product analysis - Criteria for product design - Market research - Design for customer and design for manufacture - Product life cycle.

UNIT II ECONOMICS OF DESIGN
Breaks even point - Selection of optimal materials and processes - Material layout planning - Value analysis - Re-engineering and its impact on product development.

UNIT III PRODUCT MODELING
Product modelling - Definition of concept - fundamental issues - Role and basic requirement of process chains and product models - Types of product models - Model standardization efforts - types of process chains - Industrial demands.

UNIT IV PRODUCT COSTING
Bill of materials - Outline Process charts - Concepts of operational standard time - Work measurement by analytical estimation and synthesis of time - Budgets times - Labor cost and material cost at every stage of manufacture - W.I.P. costing

UNIT V RECENT ADVANCES AND CONCEPTS IN PRODUCT DESIGN
Fundamentals of FEM and its significance to product design - Product life cycle management Intelligent information system - Concept of Knowledge based product and process design.

TOTAL : 45

TEXT BOOKS

REFERENCES
1. Harry Nystrom - Creativity and Innovation, John Wiley & Sons, 1979
GOAL
To enable the student to understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.

OBJECTIVES
The course should enable the students to:

1. Explain the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.
2. Illustrate some of the simple instruments used for condition monitoring in industry.

OUTCOME
The students should be able to:

1. Understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
2. Know about different maintenance practices followed in the industry like Preventive maintenance, condition monitoring and repair of machine elements.

UNIT I PRINCIPLES AND PRACTICES OF MAINTENANCE PLANNING
Basic Principles of maintenance planning - Objectives and principles of planned maintenance activity Importance and benefits of sound Maintenance systems - Reliability and machine availability MTBF, MTTR and MWT - Factors of availability - Maintenance organization - Maintenance economics.

UNIT II MAINTENANCE POLICIES - PREVENTIVE MAINTENANCE
Maintenance categories - Comparative merits of each category - Preventive maintenance, maintenance schedules, repair cycle - Principles and methods of lubrication - TPM.

UNIT III CONDITION MONITORING
Condition Monitoring - Cost comparison with and without CM - On-load testing and off-load testing Methods and instruments for CM - Temperature sensitive tapes - Pistol thermometers - wear-debris analysis.

UNIT IV REPAIR METHODS FOR BASIC MACHINE ELEMENTS
Repair methods for beds, slideways, spindles, gears, lead screws and bearings - Failure analysis Failures and their development - Logical fault location methods - Sequential fault location.

UNIT V REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
Repair methods for Material handling equipment - Equipment records - Job order systems - Use of computers in maintenance.

TOTAL : 45
TEXT BOOKS

REFERENCES

ME 2855 NON DESTRUCTIVE TESTING METHODS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL
To impart knowledge on Non Destructive Testing procedures.

OBJECTIVES
The course should enable the students to:

1. Understand principle behind various NDT techniques and study about NDT equipments and accessories.
2. Learn working procedures of various NDT techniques
3. Learn materials that could be inspected - codes, standards, specifications.

OUTCOME
The students should be able to:

1. Know about NDT equipments and accessories.
2. Develop the NDT techniques in practical applications.
3. Compare and select of various NDT techniques based on the applications

UNIT I NON-DESTRUCTIVE TESTING: AN INTRODUCTION
Introduction to various non destructive methods - Comparison of Destructive and Non destructive Tests, Visual Inspection, Optical aids used for visual inspection, Applications.

UNIT II LIQUID PENETRANT TESTING, MAGNETIC PARTICLE TESTING
Physical principles, procedure for penetrant testing, Penetrant Testing materials, Penetrant testing methods - water washable, post - Emulsifiable methods, Applications Principle of MPT, procedure used for testing a component, Equipment used for MPT, Applications
UNIT III EDDY CURRENT TESTING, ACOUSTIC EMISSION

UNIT IV ULTRASONIC TESTING
Principle, Ultrasonic transducers, Inspection Methods, Normal Incident Pulse - Echo Inspection, Through transmission Testing, angle Beam Pulse - Echo testing, Techniques for Normal Beam Ispection, Ultrasonic Flaw detection Equipment, Modes of display A- scan, B-Scan, C-Scan, Applications.

UNIT V RADIOGRAPHY, COMPARISON AND SELECTION OF NDT METHODS
Basic principle, Effect of radiation on Flim, Radiographic imaging, Inspection Techniques - Single wall single image, Double wall Penetration, Multiwall Penetration technique. Comparison and selection of various NDT techniques.

TOTAL: 45

TEXT BOOK

REFERENCES

ME 2879 MEMS AND MICROSYSTEM FABRICATIONS

GOAL:
To familiarize the student in the technology of various micro machinery systems

OBJECTIVES:
By studying this course the student will be able to understand
• To understand the mechanics, scaling and design of micro system
• To learn various micro fabrication processes
• To impart knowledge on microsystems packaging and metrology of micro machined components
OUTCOME:
After studying the course, the student would have learnt

1. About the mechanics of micro system
2. About the various micro system fabrication processes and apply them is field.
3. About the measurement of quality parameters using Micro coordinate measuring machine.

UNIT I INTRODUCTION

UNIT II MECHANICS, SCALING AND DESIGN

UNIT III MICRO SYSTEM FABRICATION PROCESSES
Introduction – Photolithography – Ion implantation – Chemical Vapor deposition – Physical Vapor deposition-cleanroom-Bulk micro machining: etching, is tropic and anisotropic etching, wet and dry etching-Surface micro machining: process, mechanical problems associated with surface micro machining- LIGA process: general description, materials for substrates and photoresists-SLIGA process – Abrasive jet micro machining-Laser beam micro machining- Micro Electrical Discharge Micro Machining–Ultrasonic Micro Machining-Electro chemical spark micro machining-Electron beam micro machining-Focused I0 on Beam machining

UNIT IV TOOL BASED MICRO MACHINING

UNIT V MICRO SYSTEMS PACKAGING AND METROLOGY OF MICRO MACHINED COMPONENTS
TEXTBOOKS:

REFERENCE BOOKS:

ME 2880 NANO TECHNOLOGY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

GOAL:
To expose to the students to the latest and Emerging area in Material Science namely Nano technology

OBJECTIVES

1. The course should enable the students to understand the general uses relating to Nano Technology and Nano Fabrication.
2. Methods for production of Nano particles
3. Characterization of Nano technology

OUTCOME:
This students should be able to

1. Characterization Nano Materials
2. Employ the process for production of Nano Materials

UNIT I INTRODUCTION TO NANOMATERIALS

UNIT II SYNTHESIS OF NANOMATERIALS
Methods of production of Nanoparticles – Top–Down processes, Bottom-Up Processes - Sol-gel synthesis, Inert gas condensation, Sonochemical processing, Molecular self assembly, High
energy Ball milling, Plasma synthesis, Electro deposition, Chemical vapour deposition, Physical vapour deposition, and other techniques. Synthesis of Carbon Nanotubes – Solid carbon source based production techniques, Gaseous carbon source based production techniques - Issues in fabrication of nanomaterials Nano wires.

UNIT III CHARACTERISATION OF NANOMATERIALS

UNIT IV APPLICATIONS OF NANOMATERIALS
Applications in Mechanical, Electronics engineering industries – Use of nanomaterials in automobiles, aerospace, defense and medical applications – Metallic, polymeric, organic and ceramic nanomaterials.

UNIT V NANO FABRICATION AND MACHINING
LIGA, Ion beam etching, Molecular manufacturing techniques – Nano machining techniques – Top/Bottom up Nano fabrication techniques - Sub micron lithographic technique, conventional film growth technique, Chemical etching, Quantum materials.

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES: