
VIDEO TRANSCRIPT

SUMMARIZER

A PROJECT REPORT

Submitted by

MANIKANTA REDDY KYATHAM

(18113047)

Under the guidance of

Mr. C. Gowdham

Assistant professor

In partial fulfilment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE

MAY 2022

BONAFIDE CERTIFICATE

Certified that this project report Video Transcript Summarizer is the

bonafide work of Manikanta Reddy K (18113047) who carried out the

project work under my supervision during the academic year 2021-

2022.

Dr. J. THANGAKUMAR, Mr. C. Gowdham,

HoD,

Department of CSE.

SUPERVISOR

ASSISTANT PROFESSOR

INTERNAL EXAMINER EXTERNAL EXAMINER

Name:

Designation:

Name:

Designation:

Project Viva-

voce conducted

on

i

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO

LIST OF ABBREVIATIONS ⅰv

 LIST OF FIGURES v

 ABSTRACT vi

1 INTRODUCTION 1

 1.1 Overview 1

1.2 Problem definition and scenarios 2

 1.3 Motivation 3

 1.4 Overview of documentation 3

 1.5 Organization of Thesis 4

2 LITERATURE REVIEW 5

 2.1 Introduction 5

 2.2 Review Paper on Automatic Text

Summarization

5

 2.3 Automatic text summarization – A

comprehensive survey

6

 2.4 Literature Study 6

 2.5 Literature Overview 7

3 PROJECT DESCRIPTION 8

 3.1 Objective 8

 3.2 Existing Systems 8

 3.2.1 YouTube Summarization over Flask 9

 3.3 Proposed System 10

ii

 3.4 Overview of Project Description 11

4 SYSTEM DESIGN 12

 4.1 System Design 12

 4.2 Text Summarization 13

 4.2.1 Backend 15

 4.2.1 Acquiring Transcripts of a video 15

 4.2.3 Performing text summarization 16

 4.2.4 REST API Endpoint 16

 4.2.5 Chrome Extension 17

 4.2.6 User Interface – extension pop-up 18

 4.2.7 Display Summarized Text 19

 4.3 Overview of System Design 20

5 PROJECT REQUIREMENTS 21

 5.1 Software used 21

 5.2 Libraries and Frameworks used 21

 5.3 Overview of Project Requirements 23

6 MODULE DESCRIPTION 24

 6.1. Server 24

 6.2. Client 24

 6.3 Overview of Module Description 24

7 IMPLEMENTATION 26

iii

 7.1 Project Flow 26

 7.2 Working of System 26

 7.3 Server 27

 7.4 Client (Chrome extension) 28

 7.3 Overview of Project Implementation 28

8 RESULT AND ANALYSIS 29

 8.1 Output 29

 8.2 Analysis 30

 8.3 Overview of Results and Analysis 31

9 CONCLUSION 32

 9.1 Conclusion 32

 9.2 Future Enhancement 32

 9.3 Summary 33

10 TEAM REPORT 34

 10.1 Objective 34

 10.2 Overview of the team report 34

REFERENCES

APPENDIX A: SAMPLE SCREEN

 APPENDIX B: SAMPLE CODE

 APPENDIX C: PLAGIARISM REPORT

 APPENDIX D: PUBLICATION DETAILS

 APPENDIX E: TEAM DETAILS

iv

ACKNOWLEDGEMENT

First and foremost, we would like to thank ALMIGHTY who has

provided us the strength to do justice to our work and contribute our

best to it.

I wish to express our deep sense of gratitude from the bottom of my

heart to my guide Mr. C. Gowdham (Assistant Professor),

Computer Science and Engineering, for his motivating discussions,

overwhelming suggestions, ingenious encouragement, invaluable

supervision, and exemplary guidance throughout this project work.

We would like to extend our heartfelt gratitude to Dr. J. Thanga

Kumar, Ph.D., Professor & Head, Department of Computer

Science and Engineering for his valuable suggestions and support in

successfully completing the project.

We want to thank our Project Co-Ordinator and Panel members for

keeping our project in the right track. We would like to thank all the

teaching, technical and non-technical staff of Department of Computer

Science and Engineering for their courteous assistance.

We thank the management of HINDUSTAN INSTITUTE OF

TECHNOLOGY AND SCIENCE for providing us the necessary

facilities and support required for the successful completion of the

project.

As a final word, we would like to thank each and every individual who

have been a source of support and encouragement and helped us to

achieve our goal and complete our project work successfully.

v

ABSTRACT

The field of text summarization has been evolving along with the facilitations in

the field of Natural Language Processing (NLP) and Computer Science. This

project investigates the field of text summarization, giving an overview of

different approaches towards automatically generating summaries. Further, a

clarification towards the requirements and scope towards implementing a

summarizer for video transcripts is given.

The length of a transcript can be shortened by applying extractive summarization

with Bert model and then the T5 model is used. Here, currently Sumy with

Latent Semantic Analysis (LSA) summarizer is used. The method is proved to

be a good for a base summarizer to tailor for video transcripts. The quality of the

summaries generated by the summarizer were evaluated by comparing them to

human created summaries, the evaluation showed that the summarizer performs

consistently and produces readable summaries.

vi

LIST OF ABBREVIATIONS

Abbreviation Expansions

AI Artificial Intelligence

API Application Programming Interface

DOM Document Object Model

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

LSA Latent Semantic Analysis

ML Machine Learning

NLP Natural Language Processing.

REST Representational state transfer

URL Uniform Resource Locator

vii

LIST OF FIGURES

Figure no. Figure name Page no.

3.1 Working of the flask app 9

3.2 User Interface 10

4.1 Flow Diagram 12

4.2 Transcript output 16

4.3 Application Directory 17

4.4 Chrome extension diagram 18

8.1 Summary of the video as output 29

8.2 Transcripts without summarization 30

1

CHAPTER 1

INTRODUCTION

1.1. Overview

Machine Learning (ML) as a domain is the future in all aspects of technology. It

is the heart of simulation of humans in machines programmed in a way such that

it thinks like humans and mimics their actions. This paved the way to so many

other subfields of ML like, Deep Learning, Neural Networks, Natural Language

Processing, and many other things. This made possible so many new technologies

like text to speech, and speech to text engines, Image recognition, voice

recognition, facial recognition, and has changed the way we see the world. We

have come a long way with constant development in these fields now trying to

make them more efficient and flexible. Thanks to the open-source and AI

developer communities, programming a complex ML algorithm is now made

easy, thereby making developers explore deeper. To apply ML in any field we

need lots of data. The ML used in such fields as chess-playing to self-driving cars

relies heavily on deep learning and natural language processing.

Text summarization is one such technique under ML which summarizes the long

paragraphs of text into simple understandable text.

To conclude, AI in its short existence has increased understanding of the nature

of intelligence and provided an impressive array of applications in a wide range

of areas. It has sharpened the understanding of human reasoning, and the nature

of intelligence in general.

2

1.2. Problem definition and scenarios

Luhn proposed one of the first text summarizing methods (Luhn, 1958). His

method for generating technical paper abstracts was to utilize a frequency

count of words and phrases to determine important material. This strategy is

simplistic, yet it provides a good result and a new perspective on how

summaries can be constructed from any text Later, as the areas of concern

grew, Machine Learning and Natural Language Processing (NLP) are

becoming increasingly popular, more advanced text summarizing approaches

have been proposed as technology has progressed.

Long videos or texts can be unpleasant and time-consuming to go through

or read, and many of us would prefer not to be obliged to do so. But what if

there was an accurate summary of the whole video that we could trust to

accurately portray the full content turns out to be the solution.

This would free up time and resources, allowing the individual to concentrate

on other matters. Creating accurate and informative summaries, on the other

hand, is a challenge. It's not a simple task. There are various factors to consider,

some of which are related to the specified output format for the summary or the

technique for generating the summary.

There are a lot of videos on YouTube that have transcripts. Summarization

would be especially useful in circumstances where films are lengthier and

different segments have varying degrees of relevance. In this respect, video

summarization may be beneficial in terms of saving the viewer's time. It will

increase user productivity by allowing them to concentrate solely on the

important text spoken in the video.

3

1.3. Motivation

Throughout the day, an enormous number of video recordings are generated

and shared on the Internet. It has become quite difficult to devote time to

watching such videos, which may last longer than expected, and our efforts

may be in vain if we are unable to extract useful information from them.

Summarizing transcripts of such videos allows us to rapidly look for relevant

patterns in the video and saves us time and effort from having to go through the

entire content.

This stood as a driving factor to find ways to make this process a whole lot

easier. The objective stands to identify the most important information from the

given transcripts and present it to the end users post summarization request.

1.4. Organization of the Thesis

The literature survey is given under chapter two where the collected reference

papers have been mentioned along with its detailed and comparative explanation.

The third chapter describes the overall project, details about the existing systems

that support the same idea of the project and the proposed work distinguished

from them. The proposed system design has been mentioned in detail under

chapter 4, which also includes the design flow of the project. The fifth chapter

holds information on the requirements of the project including details of the

software programs and applications used in the development of the system.

Chapter 6 contains the module description of the project and explains the split-

up of each module in detail. The seventh chapter explains the implementation of

the proposed system followed by the eighth chapter which highlights the results

and analysis of the project. The ninth chapter features the scope for future

development of this project and how it can be modified for better

implementation. It then finally concludes the project. The final chapter, chapter

10 presents the team report, which details the objectives. Reference papers that

were referred for the development of this system along with the sites referred are

4

mentioned in the end.

1.5. Overview of documentation

This document contains information about the proposed model of achieving the

video transcript summarization via chrome extension. It contains information

on the software, programming languages and techniques used, Also the

packages used in developing this project. Block diagrams are included to

inform the project flow. References of standard research papers are also added.

It contains the future scope of the project for further development.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the field of AI, under which the project is being developed there are numerous

research documents that will support the development of this project, especially

in the specific field of text summarization. Papers produced here, also discuss

the types of text summarization like extractive summarization and abstractive

summarization and various methods of carrying them out.

2.2 Review paper on Automatic Text Summarization

This paper discusses content summary as a method of condensing the source

archive into a dense structure that maintains a common understanding of the

record. Abstractive and extractive content summarizing methods exist. For

outlining the records, abstractive summarization necessitates the use of certain

language preparation mechanisms. For situating the sentences, extractive

summarization involves factual, etymological, and heuristic procedures. For the

summary of material in various languages, a variety of methodologies have been

developed. The methodologies for abstractive and extractive text summarization

are examined in this work.

To process, store, and manage data effectively, it is now necessary to create a

large amount of data quickly. It can be difficult to find the relevant data from

massive amounts of stored data or vast information archives at times. With the

advent of technologies such as big data, the capacity to mine information in many

formats, whether textual or graphical, has never been more significant, and data

mining has never been more important.

6

2.3 Automatic Text Summarization – A Comprehensive Survey

Because of the massive volume of textual material that increases exponentially on

the Internet and the numerous archives of news stories, scientific papers, legal

documents, and so on, Automatic Text Summarization (ATS) is becoming

considerably more significant. Manual text summarizing takes a lot of time,

effort, and money, and it's even unfeasible when there's a lot of text. Since the

1950s, researchers have been working to develop ATS procedures. There are

three types of ATS approaches: extractive, abstractive, and hybrid. The extractive

method chooses the most essential sentences from the input document(s) and

concatenates them to create the summary. The abstractive technique converts the

input document(s) into an intermediate representation before generating a

summary containing phrases that differ from the originals.

Both the extractive and abstractive processes are used in the hybrid approach.

Despite all the methodologies presented, the produced summaries still lag behind

human-authored summaries.

The extractive strategy is the focus of most studies. It is necessary to place a

greater emphasis on abstract and hybrid techniques. This study offers scholars

with a complete assessment of the many components of ATS, including

methodologies, methods, building blocks, procedures, datasets, evaluation

methods, and future research goals.

2.4 Literature study

Two papers are taken to comparison, namely, “Review Paper on Automatic

Text Summarization” and “Automatic Text Summarization – A Comprehensive

Survey”. They will be addressed as former and latter in this section’s

proceeding.

7

Authors for the former paper, Ujjwal Rani, Karambir Bidhan and for the latter

are, Wafaa S. El-Kassasa, Cherif R. Salamaa, Ahmed A. Rafeab , Hoda K.

Mohamed and are published in International Research Journal of Engineering

and Technology (IRJET)and cited in ResearchGate respectively.

Methodology they propose are, Condensing the source archive into a dense

structure that maintains a common understanding of the record which further

divides the image into grids. Upon which the extractive and abstractive

summarization techniques are applied. While the latter describes three varies

methods to deploy to achieve automatic text summarization which are namely

abstractive, extractive and hybrid. A brief explanation of each of the method is

discussed.

2.5 Overview of Literature Review

This chapter briefs about the various methods of text summarization and their

types. A crisp explanation of their implementation pertaining to the work done in

this project and also their pros and cons have been discussed with a detailed

and comparative explanation.

8

CHAPTER 3

PROJECT DESCRIPTION

3.1 Objective

Text summarization is a technology that has been rapidly growing with

increases in its day-to-day applications. Summarization of text in various

scenarios, to be particular of the project’s scenarios of summarizing the

transcripts of a video is one such approach towards making the jest of a video

being watched clearly understood with having to spend whole duration of the

video watching it. Even though there are many methods in achieving this,

procuring the. This approach provides a solution by making a chrome extension

available to the end user and by the request through which the summary of the

video’s transcripts is visible below it.

3.2 Existing Systems

Even though many systems and architectures exist to perform text

summarization, this project demonstrates a different approach of accessing the

backend python API, that is, in the form a chrome extension, which upon

clicking the summarize button provided makes a http request to the backend to

acquire the summarized text for the obtained transcripts of a video. However,

when it comes to improving or enhancing the object detection model, there are

very few solutions available. One such method is where a backend is hosted on

a server and a request for the API is made by pasting the URL of the video in

the placeholder of the label provided in the frontend. The following sub chapter

details the method.

9

3.2.1 YouTube video summarization over Flask.

The backend here uses Flask framework to receive API calls and then respond

to the calls with a summarized text. The API here can only work on the

YouTube videos which have well formatted transcripts available. It hosts a web

version of the Summarizer to make the API calls in an easier way and show the

output within a webpage. The figures 3.1 and 3.2 below show the working and

GUI interface of the system respectively. In this existing system, the user

should manually paste the URL of the video to acquire the summarized

transcripts.

Figure 3.1 Working of the Flask app.

10

Figure 3.2 User Interface.

3.3 Proposed system

To tackle the problem of the mentioned existing systems in the above sub

chapter, a solution for acquiring transcripts of a video, a high-level approach is

given in the following steps:

 To get transcripts/subtitles of a YouTube video using a python API

 And then to perform text on obtained transcripts using HuggingFace

transformers.

 A flask backend REST API is then built to expose the summarization

service to the end user.

11

 A chrome extension is then developed which will utilize the backend

API to display the summarized text to the user.

3.4 Overview of Project Description

The third chapter, project description sums up the brief description of the overall

project. It continues to detail the existing system relevant to the proposed project

and their weakness. Without putting an end there, the chapter also includes the

details of the proposed system which is set to break the weakness mentioned in

the existing system.

12

CHAPTER 4

SYSTEM DESIGN

4.1 System flow

The system design is from a high-level point of view is split into five stages

which together will make up the final product. The idea behind the system is to

display the summarized text of the video transcript from a chrome extension. A

simple visual representation of the system design is given below in fig.4.1.

Figure 4.1 Flow diagram

The system flow starts from the end-user who will open a YouTube video and

click on summarize in chrome extension to create a HTTP request to the

backend. This action requests a transcript for the given YouTube video ID. The

backend then returns the transcript for the relevant video ID as a HTTP

response. Further, transcript summarization is performed and is returned as a

HTTP response too. Lastly, the summarized transcript of the requested video is

displayed on the interface.

13

4.2 Text Summarization

Summarization is the task of condensing a piece of text to a shorter version,

reducing the size of the initial text while at the same time preserving key

informational elements and the meaning of content. Because manual text

summarizing is a time-consuming and inherently tedious activity, automating it

is expanding in popularity and so serves as a powerful motivator for academic

study.

In general, there are two approaches for automatic summarization: extraction

and abstraction.

The extractive approach:

Extractive summarization uses a scoring mechanism to extract sentences from a

document and combine them into a logical summary. This method works by

detecting key chunks of the text, cutting them out, then stitching them back

together to create a shortened form.

As a result, they rely solely on phrase extraction from the original text. Most of

today's summarizing research has centered on extractive summarization, which

is easier and produces naturally grammatical summaries with minimum

linguistic processing. Extractive summaries also include the most essential

sentences from the input, which can be a single document or a collection of

papers.

The following is a typical extractive summarization system flow:

1. Creates an intermediate representation of the input text in order to discover

the most important information. The metrics are computed for each sentence

in the provided matrix in most cases.

2. Scores the sentences based on the representation, assigning a number to

each sentence that indicates the likelihood of it being included in the

summary.

14

3. Generates a summary from the top k most important sentences. Latent

semantic analysis (LSA) has been utilized in several research to identify

semantically significant sentences.

The Abstractive approach:

Abstractive summarization methods aim to produce summaries by interpreting

the text using advanced natural language techniques in order to generate a new

shorter text — parts of which may not appear in the original document — that

conveys the most critical information from the original text, requiring

rephrasing sentences and incorporating information from the full text to

generate summaries like those produced by a human-written abstract. In fact,

an acceptable abstractive summary is linguistically fluent and covers key

information from the input.

As a result, they aren't limited to only picking and rearranging passages from

the original text.

Abstractive approaches make use of recent deep learning advancements.

Abstractive methods take advantage of the recent success of sequence-to-

sequence models since it can be thought of as a sequence mapping task where

the source text should be mapped to the target summary. A neural network

reads the text, encodes it, and then generates target text in these models, which

are made up of an encoder and a decoder.

Building abstract summaries is a difficult process that is more difficult than

data-driven alternatives like sentence extraction and requires advanced

language modelling. Despite recent advancements employing neural networks

inspired by the progress of neural machine translation and sequence to

sequence models, they are still far from approaching human-level quality in

summary creation.

15

4.2.1 Backend

APIs revolutionized the way we design apps; there are countless examples of

APIs throughout the world, as well as several ways to structure and set up your

APIs.

Here we create a back-end application directory and structure it to work with

the required files. Back-end of the application needs to be isolated to avoid

conflicting dependencies from other parts of the project.

The requirements and the process adapted is

• Make a directory for the back-end programme that contains the files app.py

and requirements.txt.

• Create an app.py file with a basic Flask RESTful Boilerplate.

• Install pip in a new virtual environment that will serve as an isolated

environment where everything is kept in one place (a directory).

• Activate the newly created virtual environment and install the dependencies

listed below.

Using pip: -

- The flask

- youtube_transcript_api

- transformers[torch]

• Run pip freeze and save the output to a file called requirements.txt. This

The requirements.txt file specifies which Python packages are

necessary to run the program.

4.2.2 Acquiring transcripts of a video

Here we utilize a python API which allows us to get the transcripts of a given

YouTube video.

16

We construct a function in app.py that takes a YouTube video id as an input

argument and returns a parsed full transcript as output. - The Transcript API

will return a collection of dictionaries that looks somewhat like this:

Figure 4.2 Transcript output.

We then parse the data from the output to return the transcript in whole string

format.

4.2.3 Performing text summarization

Create a function in app.py that takes a YouTube transcript as an input argument

and outputs a summary transcript. - From the checkpoint name, create a tokenizer

and a model. An encoder-decoder model, such as Bart or T5, is typically used for

summarization. - Establish the transcript to be summarized. - Add the

"summarise: " T5-specific prefix. - To generate the summary, use the

PreTrainedModel.generate() method.

4.2.4 REST API endpoint

In app.py, create a Flask API Route with GET HTTP Request method with

URL http://[hostname]/api/summarize?youtube url=url>.

- Get the YouTube video id from the YouTube URL you got from the query

17

params. Following the execution of the transcript summarizer function, run the

transcript creation function to generate the summarized transcript.

- Handle HTTP errors and return the summary transcript with HTTP Status OK.

4.2.5 Chrome extension

Extensions are small programs that allow us to customize our browsing

experience. They allow users to customize Chrome's functionality and behavior

based on their personal preferences. They are built on web technologies such as

HTML, CSS and JavaScript.

An application directory containing essential files is created.

Figure 4.3 Application directory.

The below pictorially depicts different parts of the chrome extension in terms

of files.

18

 Figure 4.4 Chrome extension diagram.

4.2.6 User Interface – extension pop-up

A user interface is designed to allow the user to interact with popups, which are

one of numerous sorts of user interfaces that a Chrome extension can provide.

They appear upon clicking the extension icon in the browser toolbar.

• In the popup.html file,

- Include the popup.css file to make the styles available to the HTML elements.

- Include the popup.js file to allow users to interact with the HTML

components.

- Add a Summarize button element that, when clicked, emits a click event that

an event listener will notice and respond to.

- Add a div element where the summarized text from the backend REST API

call will be shown.

• In the file popup.css,

- To improve the user experience, provide appropriate CSS styling to the

HTML components button and div.

19

4.2.7 Display summarized text

We've developed a basic user interface to allow people to interact with and view

the summarized text, however there are a few missing links that need to be fixed.

The extension now can communicate with the backend server utilizing HTTP

REST API Calls.

• In popup.js,

- When DOM is ready, attach the event listener with event type as "click" to the

Summarize button and pass the second parameter as an anonymous callback

function.

- In an anonymous function, use the chrome.runtime.sendMessage

method to send an action message to contentScript.js, notifying it to run summary

creation.

- Add the chrome.runtime.onMessage event listener to listen for message

results from contentScript.js, which will call the outputSummary callback

method.

- Using JavaScript, programmatically display the summary in the div element in

the callback function.

In contentScript.js,

- To listen messagegenerate, add an event listener

chrome.runtime.onMessage, which will trigger the generateSummary

callback method.

- In the callback function, extract the current tab's URL and send a GET HTTP

request to the backend using the XMLHTTPRequest Web API to receive

summary text as a response.

- Send an action message result with summary payload using

chrome.runtime.sendMessage to notify popup.js to display the

summarized text.

20

4.3 Overview of System Design

This chapter discusses the overview of the system design proposed for this

system. It describes the flow of the design in detail which is followed by actions

that are performed in each stage of the design system. In summary, it discussed

the detailed view of the system architecture.

21

CHAPTER 5

PROJECT REQUIREMENTS

5.1 Software used

Python 3.7.5 and JavaScript are used for programming the whole application.

Since python has an intuitive syntax, basic control flow, and data structures and

supports interpretive run-time, without standard compiler languages, it makes it

especially useful for prototyping algorithms for AI and JavaScript for its

component as an object feature, Python as a programming language and

JavaScript as a scripting language were chosen over other languages for the

development of this application.

5.2 Libraries and frameworks used

The list of Python libraries and frameworks used in the development of this

project is mentioned in this section.

a) flask

Flask framework has been used as it is a small and lightweight

framework that provides tools and features to create a web application

easier. It becomes a more accessible framework as it gives flexibility in

terms of building a web application quickly using a single python file.

b) youtube_transcript_api

youtube_transcript_api is a python API that allows us to get the

transcripts/subtitles of a YouTube video. It also works for automatically

generated subtitles and also supports translating subtitles.

22

c) sumy

Simple library and command line utility for extracting summary from

HTML pages or plain texts. The package also contains simple evaluation

framework for text summaries.

d) nltk

NLTK is a standard python library that provides a set of diverse

algorithms for NLP. It is one of the most used libraries for NLP and

Computational Linguistics.

e) numPy

NumPy is a library for the Python programming language, and it adds

support for large Multidimensional arrays and matrices along with a large

collection of high-level mathematical functions. To operate on these

arrays.

f) pyngrok

pyngrok is a Python wrapper for ngrok that manages its own binary and

exposes ngrok through a Python API.

ngrok is a reverse proxy tool that creates secure tunnels from public

URLs to localhost, making it ideal for exposing local web servers,

building webhook integrations, enabling SSH access, testing chatbots,

demoing from your own machine, and more. It's even more powerful

with pyngrok's native Python integration.

23

5.3 Overview of Project Requirements

This chapter briefs out on the requirements of the proposed project. The project

is entirely a software product; therefore, the requirements are only software-

based, and no hardware components are used in this project. The chapter briefs

on the programming languages used and the libraries/packages used in the

development of the system along with their use case.

24

CHAPTER 6

MODULE DESCRIPTION

The proposed system design was set out to be as two divided modules in terms

of implementation. The second module, server, which is flask app contributes

majorly to the design of the system’s backend, summing up to 60% of the total

work. It deals with work directly on processing, summarizing the acquired

transcripts. This chapter talks about the splitting of the modules and the details

of each module

6.1 Server-side

The first module, namely the server is a simple Flask app with an API

/api/summarize?youtube video='url' that can be used to get the

summary of a YouTube video by making a simple GET XML HTTP request.

The work in this module revolves around the acquiring the transcript file from

the backend and making it available to process text summarization and then

eventually is sent to the frontend to be displayed in the form of an API. The

API is the JSON format.

6.2 Client-side

It's a chrome addon that makes use of the API from the server module to render

the summary of a YouTube video underneath the video player. Summarize button

is clicked to see a synopsis of the YouTube video.

6.3 Overview of Module Description

The chapter of module description details about planning and structuring the

effort required to implement the proposed system by dividing it into two

modules. It lays out a description of each module and determines the effort

25

required of each module. The total effort required of 100% is divided into two

parts depending upon the weight of each module.

26

CHAPTER 7

IMPLEMENTATION

7.1 Project Flow

The project has been implemented with the central idea of performing text

summarization to the transcripts of the requested YouTube video by taking the ID

of it from the browser url and return the summarized transcript beneath the video

along with the timestamps which upon clicking them will take to that part of the

video. A basic interface to request for the summary is made available with

chrome extension upon clicking which the server loads the summary beneath

the video. And finally, the user interface of the web forum was successfully

integrated with the YouTube interface, making the summarization service

seamless. With this the project is considered to be implemented successfully as

per the requirements and flow which was designed in the early stages of the

project. Overall, the project can be said as the beginning foundation of a much

greater vision for a highly efficient system.

7.2 Working of System

The system as proposed finds it working as per the project flow. The system will

work in the following way to generate the desired output. The end user will click

on the extension icon which then provides the summarize button, clickable. This is how,

upon clicking the summarize button, user requests for the transcript summary.

Clicking the button is technically making an HTTP request for the backend to

for the transcript. Upon receiving the request YouTube from the backend

provides the relevant transcript file pertaining to the video ID.

Receiving the transcript file, it is now subjected to text summarization and

upon completion of which it is passed to the popup.js file which forms the user

interface for the summarized text to be displayed.

27

7.3 Server

Flask is used to implement the server side as a restful service. The summarization

is done by first generating a transcript of the video, which is done with the aid of

a python library called youtube-transcript-api if the video already has a

transcript, else the audio is taken and voice to text transformation is done. This

time, several useful Python libraries are used.

The summary can then be created with the help of the transformers.

-Extractive summarization

-Abstractive summarization

The transcript length can be reduced by using extractive summarization with the

Bert model, followed by the T5 model.

Sumy with the LSA summarizer is currently in use.

After making a GET HTTP request to /api/summarize?youtube video="a valid

url," the summary is returned as an HTTP response.

To deliver the request over HTTPS (since YouTube is a https website and

sending an HTTP request to a http website may result in a mixed content error),

the app must operate on https rather than http. There are two possible ways for

this:

1.Using pyngrok (a wrapper package for ngrok) to expose local host on a

public url is a simple alternative. It also gives us the option of using https or http

for the url, so it accomplishes our goal. This even allows the program to run in

environments where localhost isn't available, such as Google Colab. As a result,

this is a good option for testing. The server folder contains the colab notebook

that is used for testing.

2.Another alternative is to host it on a server that can provide the

necessary https url and certificates.

28

CORS had to be introduced as well, because if the HTTP request is headless, it

will be rejected owing to the CORS policy: The requested resource does not have

a 'Access-Control-Allow-Origin' header. Using the flask cors package, CORS is

simply enabled for all domains on all routes.

7.4 Client (chrome extension).

If the address is of the form https://www.youtube.com/watch?v=**, the

popup.js sends a GET request to our *Server API when you click the

summary button on the popup. A preload text is placed to a div element beneath

the youtube player. The text is then provided to content.js, which modifies

the content inside the above div element. Many of the characteristics are inherited

from the parent element, allowing it to blend in perfectly. In the content, more

styling is applied. It may be loaded unpacked from chrome:/extensions/ and

utilized.

7.5 Overview of Project Implementation

This chapter deals with the execution of the various phases of the project. It

focuses on the highlights of how the project is being functioned with emphasis

on the desired output. The project implementation abides by the designed system

flow and takes a step-by-step approach based on the divided module which helps

succeed the core objective of the project along with obtaining optimum results.

29

CHAPTER 8

RESULT AND ANALYSIS

8.1 Output

After the execution of the system, the system provides the output o f the

s ummar ized text along with the time stamp of the text in the video, which

upon clicking will take us to the particular part of the video. It produces the

following.

 Summarized text of the video transcript beneath the video.

 Timestamp pertaining to the transcript.

Figure 8.1 below shows the output derived after performing text summarization

on the transcripts of the requested video.

Figure 8.1 – Summary of the video as output.

Figure 8.2 Shows the transcripts of a video before performing text

summarization. The top right of the figure shows the transcripts.

30

Figure 8.2 – Transcripts without summarization.

8.2 Analysis

The project has reached its conclusion and the results were driven as expected

from the proposed system design in the initial stage of the project. The project

includes performing various text summarization tasks such as performing

abstractive summarization using sumy with help of tokenizers.

Text summarization is typically approached as a supervised machine learning

issue in NLP (where future outcomes are predicted based on provided data).

The following is a typical example of how an extraction-based technique to text

summarization can work:

1. Present a method for extracting the necessary keys from the source

document. To find the essential words, you can utilise part-of-speech tagging,

word sequences, or other linguistic patterns.

2. Collect text documents with key words that are positively labelled.

The keys must be compatible with the extraction method specified. You can

also build negatively labelled keys to improve accuracy.

31

3. To make the text summary, train a binary machine learning classifier.

Following features can be included: -

 Length of the key phrase

 Frequency of the key phrase

 The most recurring word in the key phrase

 Number of characters in the key phrase

4. Finally, in the test phrase, compose all the important words and

sentences and classify them.

8.3 Overview of Results and Analysis

This chapter captures the key accomplishments of the proposed system and

summarizes the result of the project. It helps to interpret the final output and

analyzes the core features. It also measures the derived solution and elucidates

the obtained values. The chapter proves vital for the project as it justifies the

ideation, planning and execution process of the project.

32

CHAPTER 9

CONCLUSION

Started with the motive of contributing to the applications of text

summarization, the system from the start thrived to stick to its initial goal and in

the end, was successfully implemented. Even though the project has been

completed, the journey doesn’t end here, the project has a huge scope of

expansion which can augment the growth of the delivered system. The scopes

and enhancements of the project are proposed in the following subchapters.

9.1 Conclusion

Set out to look into the field of text summarizing and choose one or more

methods for a prototype. The prototype should be able to generate legible

summaries of video transcripts automatically. Furthermore, the quality of the

generated summaries should be assessed in a uniform manner. Therefore, we

can come to the conclusion that the set-out project, “Video Transcript

Summarizer” has been successfully planned, proposed and implemented.

The project's goal of implementing a prototype summarizer has been met,

although the summarizer's usefulness could be improved with future code

enhancements. Furthermore, some of the more complex approaches, some of

which rely on external lexical sources, offer an intriguing approach to

improving the quality of the implemented summarizer.

9.2 Future Enhancement

The most exciting part comes in later in this project, as the proposed system has

a wide scope in scaling and enhancing the system to become a more active

33

system, thereby enriching the features of the set-out project. The first

enhancement comes in terms of exception handling. Having only the basic set

up done; this brings room for exception handling in the scenarios where the

URL of the video is incorrect. This scenario might not occur with the chrome

extension but can raise if used independently. Some of the exceptions can be if

the URL is incorrect or is a live video. Summarization should be improved if

the content can be divided down into smaller chunks and then summarized,

with time stamps. Sumy is a good option.

The transcript is now only functional for YouTube videos with subtitles; audio

and text processing form the beat enhancement.

A summary of 10-15 minutes can be presented as time stamps, and then a

person can search for a term when it is discussed and go immediately to that

point in the video.

9.3 Summary

This chapter, in detail, draws out the conclusion of the project upon the

implementation of the proposed system in the beginning. It briefs out the

completion of the project in regard to its vision and abstract and in the later part

talks about the future of the same system, on how it can be enhanced for a higher

level of its scope.

34

CHAPTER 10

TEAM REPORT

10.1 Objective

I, Manikanta Reddy K, being the sole member, orchestrated the flow of the

system design and oversaw the aspects of technical eligibility for each step of

the project evaluated and explored the various ongoing projects and research

materials supporting the project.

Time extension caused by hurdles in various stages of the project were

consolidated and conserved. Conceptualization and defining the features of the

system with ideations is done.

Also, tracked each stage of the process making sure it aligns with the proposed

and set vision. Insightful research material throughout the project were also in

the scout.

10.2 Overview of the Team Report

This chapter abridges the accomplishments by navigating the path they

embarked on whose core objective was to plan and organize separate goals and

focus on achieving them with minimal deviation.

35

REFERENCES

[1] Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In:

Proceedings of the ACL/EACL’97 Workshop on Intelligent Scalable Text

Summarization, Madrid, pp. 10–17 (1997).

[2] Bossard, A., Généreux, M., Poibeau, T.: Cbseas, a summarization system

– integration of opinion mining techniques to summarize blogs. In: Proceedings

of the 12th Meeting of the European Association for Computational Linguistics

(system demonstration), EACL ’09, Athens. Association for Computational

Linguistics, Stroudsburg (2009).

[3] DeJong, G.: An overview of the FRUMP system. In: Lehnert, W.,

Ringle, M. (eds.) Strategies for Natural Language Processing, pp. 149–176.

Lawrence Erlbaum Associates, Hillsdale.

[4] Amigó E, Gonzalo J, Penas A, Verdejo F (2005) QARLA: a framework

for the evaluation of text summarization systems. In: ACL ’05: proceedings of

the 43rd annual meeting on association for computational linguistics, pp 280–

289.

36

[5] Banerjee S Mitra P, Sugiyama K (2015) Multi-document abstractive

summarization using ILP based multi-sentence compression. In: Proceedings of

the 24th international joint conference on artificial intelligence (IJCAI 2015),

pp 1208–1214.

[6] Building RESTFUL APIs

https://atmamani.github.io/blog/building-restful-apis-with-flask-in-

python/

Accessed on:28/01/2022

[7] Flask Reference

https://github.com/AnujK2901/yt-sum-flask

Accessed on: 12/02/2022

[8] Creating Chrome extension

https://medium.com/coding-in-simple-english/how-to-create-

chrome-extension-7dd396e884ef

Accessed on:03/03/2022

[9] Installing unpacked extension

https://webkul.com/blog/how-to-install-the-unpacked-extension-in-chrome/

Accessed on: 12/04/2022

[10] UI for extension

www.Crio.do

Accessed on: 06/03/2021

37

APPENDIX A: SAMPLE SCREEN

SHOTS

38

APPENDIX B: SAMPLE CODE

from __future__ import absolute_import

from __future__ import division, print_function, unicode_literals

from flask import Flask, jsonify

import datetime

from flask import request # used to parse payload

from youtube_transcript_api import YouTubeTranscriptApi

from youtube_transcript_api.formatters import TextFormatter

from flask import render_template

from flask import abort

from flask_cors import CORS

import os

define a variable to hold you app

app = Flask(__name__)

CORS(app)

@app.route('/')

def hello():

return render_template('index.html')

@app.route('/time', methods=['GET'])

def get_time():

return str(datetime.datetime.now())

@app.route('/api/summarize', methods=['GET'])

def GetUrl():

"""

Called as /api/summarize?youtube_url='url'

"""

if user sends payload to variable name, get it. Else empty string

video_url = request.args.get('youtube_url', '')

if(len(video_url) == 0) or (not '=' in video_url):

print("f")

abort(404)

response = GetTranscript(video_url)

return jsonify(response)

def SumySummarize(text):

from sumy.parsers.html import HtmlParser

from sumy.parsers.plaintext import PlaintextParser

39

from sumy.nlp.tokenizers import Tokenizer

from sumy.summarizers.lsa import LsaSummarizer as Summarizer

from sumy.nlp.stemmers import Stemmer

from sumy.utils import get_stop_words

LANGUAGE = "english"

SENTENCES_COUNT = 3

import nltk;

nltk.download('punkt')

url = "https://en.wikipedia.org/wiki/Automatic_summarization"

parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))

or for plain text files

parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))

parser = PlaintextParser.from_string(text, Tokenizer(LANGUAGE))

stemmer = Stemmer(LANGUAGE)

summarizer = Summarizer(stemmer)

summarizer.stop_words = get_stop_words(LANGUAGE)

s = ""

for sentence in summarizer(parser.document, SENTENCES_COUNT):

s += (str)(sentence)

return s

def GetTextFromAudio():

import speech_recognition as sr

from pydub import AudioSegment

f = ""

convert mp3 file to wav

for file in os.listdir(os.getcwd()):

if file.endswith(".mp3"):

f = file

if(len(f) == 0):

return f

sound = AudioSegment.from_mp3(f)

os.rename(os.path.join(os.getcwd(), f), os.path.join(os.getcwd(), "recordings", f))

sound.export("transcript.wav", format="wav")

use the audio file as the audio source

AUDIO_FILE = "transcript.wav"

40

r = sr.Recognizer()

with sr.AudioFile(AUDIO_FILE) as source:

audio = r.record(source) # read the entire audio file

return (r.recognize_google(audio))

def GetAudio(video_url):

from youtube_dl import YoutubeDL

ydl_opts = {

'format': 'bestaudio/best',

'postprocessors': [{

'key': 'FFmpegExtractAudio',

'preferredcodec': 'mp3'

}],

}

with YoutubeDL(ydl_opts) as ydl:

ydl.download([video_url])

def StringTime(time):

time = (int)(time)

return (str)(time // 60) + ":" + (str)(time % 60)

video id are the last characters in the link of youtube video

def GetTranscript(video_url):

text = ""

try:

video_id = (video_url.split('=')[1]).split("&")[0]

transcript = YouTubeTranscriptApi.get_transcript(video_id)

duration = max(30, transcript[-1]['start'] // 5)

i, end, st = 0, 0, 0

text, ps_text = "", ""

summary_content = []

while(i < len(transcript)):

if(end - st < duration):

end = transcript[i]['start'] + transcript[i]['duration']

ps_text += transcript[i]['text']

ps_text += ". "

else:

text += "[" + StringTime(st) + " - " + StringTime(end) + "] " + SumySummarize(ps_text) +

"\n\n"

summary_content.append({"start": StringTime(st), "end": StringTime(end), "text":

SumySummarize(ps_text)})

st = end

end = transcript[i]['start'] + transcript[i]['duration']

ps_text = transcript[i]['text']

41

i += 1

summary_content.append({"start": StringTime(st), "end": StringTime(end), "text":

SumySummarize(ps_text)})

text += "[" + StringTime(st) + " - " + StringTime(end) + "] " + SumySummarize(ps_text) +

"\n\n"

return summary_content

except Exception as e:

GetAudio(video_url)

text = GetTextFromAudio()

print('The text is: ', text)

return [{"start":StringTime(0), "end":StringTime(0), "text": str(e)}]

server the app when this file is run

if __name__ == '__main__':

app.run()

42

 APPENDIX C: PLAGIARISM

REPORT

43

APPENDIX D: PUBLICATION

STATUS

The publication request has been communicated to “International Conference on

Computer Science and Artificial Intelligence” and the paper submitted is sent to the

review panel.

44

APPENDIX E: TEAM DETAILS

Team 19

Manikanta Reddy K,

18113047,

CSE 8A.

	A PROJECT REPORT
	BACHELOR OF TECHNOLOGY
	HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE
	MAY 2022

	BONAFIDE CERTIFICATE
	CHAPTER 1 INTRODUCTION
	1.1. Overview
	1.2. Problem definition and scenarios
	1.3. Motivation
	1.4. Organization of the Thesis
	1.5. Overview of documentation

	CHAPTER 2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Review paper on Automatic Text Summarization
	2.3 Automatic Text Summarization – A Comprehensive Survey
	2.4 Literature study
	2.5 Overview of Literature Review

	CHAPTER 3 PROJECT DESCRIPTION
	3.1 Objective
	3.2 Existing Systems
	3.2.1 YouTube video summarization over Flask.
	3.3 Proposed system
	3.4 Overview of Project Description

	CHAPTER 4 SYSTEM DESIGN
	4.1 System flow
	4.2 Text Summarization
	4.2.1 Backend
	4.2.2 Acquiring transcripts of a video
	4.2.3 Performing text summarization
	4.2.4 REST API endpoint
	4.2.5 Chrome extension
	4.2.6 User Interface – extension pop-up
	4.2.7 Display summarized text
	4.3 Overview of System Design

	CHAPTER 5 PROJECT REQUIREMENTS
	5.1 Software used
	5.2 Libraries and frameworks used
	a) flask
	b) youtube_transcript_api
	c) sumy
	d) nltk
	e) numPy
	f) pyngrok

	5.3 Overview of Project Requirements

	CHAPTER 6 MODULE DESCRIPTION
	6.1 Server-side
	6.2 Client-side
	6.3 Overview of Module Description

	CHAPTER 7 IMPLEMENTATION
	7.1 Project Flow
	7.2 Working of System
	7.3 Server
	7.4 Client (chrome extension).
	7.5 Overview of Project Implementation

	CHAPTER 8 RESULT AND ANALYSIS
	8.1 Output
	8.2 Analysis
	8.3 Overview of Results and Analysis

	CHAPTER 9 CONCLUSION
	9.1 Conclusion
	9.2 Future Enhancement
	9.3 Summary

	CHAPTER 10 TEAM REPORT
	10.1 Objective
	10.2 Overview of the Team Report

	REFERENCES
	APPENDIX A: SAMPLE SCREEN SHOTS
	APPENDIX B: SAMPLE CODE
	APPENDIX C: PLAGIARISM REPORT
	APPENDIX D: PUBLICATION STATUS
	APPENDIX E: TEAM DETAILS

